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ABSTRACT: Multi-mode resource-constrained multi project scheduling problem (MRCMPSP) 

is the extension of standard resource constrained project scheduling problem which considers 

multiple activity execution modes and multiple projects, subject to precedence and resource 

constraints. Multiple execution modes allow the activities to have different duration and 

resource requirement. Furthermore, companies and project managers normally also handle 

many projects. This study proposed metaheuristic method symbiotic organisms search (SOS) 

along with random-key representations, parallel schedule generation scheme (P-SGS), and 

forward backward scheduling, to find the feasible schedule and minimal project duration of the 

project portfolio. The evaluation results from standard benchmark instances shows that SOS 

can get the best solution in most of the tested instances and also achieve better solution in 

some of them. The validation results from real project case MRCMPSP show that SOS has 

better performance than other tested metaheuristic methods, namely GA and PSO. Thus, 

validate the performance of SOS. 

Keywords: multi-mode resource constrained multi project scheduling problem (MRCMPSP), 

metaheuristic, symbiotic organisms search (SOS) 

 
 
1. INTRODUCTION 

The lack of project scheduling is often regarded as one of the main reasons for project delays 

(Herroelen & Leus, 2005). Project scheduling can be defined as finding a start and finish time 

for all the activities, under certain constraints such as precedence relations, temporary 

restrictions and resource constraints, while a predefined scheduling objective is optimized 

(Félix Villafáñez, Poza, López-Paredes, Pajares, & Olmo, 2019). In the past decades there 

were two methods that have been mainly used to determine project scheduling: critical path 

method (CPM) and program evaluation and review technique (PERT). CPM and PERT usually 

assume that resources are unlimited and always available at the time of the activity execution 

(Bettemir Önder & Sonmez, 2015). This assumption may be unrealistic because resources 
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are usually shared between several activities and even several projects. Thus, these resource 

constraints often turn into a complex scheduling problem that is difficult to solve. 

The Resource-Constrained Project Scheduling Problem (RCPSP) involves assigning a 

resource or set of resources to activities in the project with limited resource capacity, that are 

more realistic than CPM and PERT, in order to meet some predefined objective, such as 

minimized project timespan and cost (Yang, Geunes, & O'Brien, 2001). RCPSP could be 

extent based from the project environment and activity execution modes which are: resource-

constrained multi project scheduling problem (RCMPSP), multi-mode resource constrained 

project scheduling problem (MRCPSP), and multi-mode resource constrained multi project 

scheduling problem (MRCMPSP).  

Compared to other variations, MRCMPSP has the highest complexity and reflect higher 

practical relevance (Kannimuthu, Raphael, Ekambaram, & Kuppuswamy, 2020). In real-life 

scheduling situations, companies and project managers do not normally handle a single 

project but many projects (F. Villafáñez, López-Paredes, & Pajares, 2014). The addition of 

multiple execution modes is also one of the extension of RCPSP that allows the activities to 

have different duration and resource requirement (Sonmez & Gürel, 2016).  

When dealing specially with the case of multi-project, there are two kinds of approaches that 

have been used: the first one is a mono-project approach, using dummy activities and 

precedence relations to combine the projects into a single mega-project, therefore simplify the 

multi-project into single-project with a single critical path. The second is a multi-project (MP) 

approach, maintaining the RCMPSP and a separate critical path per project (Kurtulus & Davis, 

1982). This study uses the mono-project approach, combining all the project into single mega 

project with one critical path (centralized method). 

Several techniques have been developed to solve the resource constrained scheduling 

problem. These techniques include exact methods, heuristics, and metaheuristic methods. 

When the project becomes larger with more than 50 activities and 3 or more execution modes, 

the exact methods are less efficient that makes heuristics and metaheuristics methods more 

preferable and suggested (Alcaraz & Maroto, 2001). Although many studies have been done 

about MRCPSP (multi-mode single project case) and RCMPSP (single-mode multi project 

case), there are less works that have combine both of the problem. Recently, the field of 

nature-inspired metaheuristics optimization algorithms (inspired by nature biological evolution) 

has grown very fast. One of them is symbiotic organisms search (SOS), that have been found 

by Cheng and Prayogo (2014). SOS is a powerful metaheuristic algorithm inspired by 

interaction between two biological organisms known as “symbiosis”. This study adopts SOS 

as the optimization algorithm to to minimize the total project makespan (Cmax) from all the 

project included in MRCMPSP, while satisfy the precedence and resource constraints. 

To validate the performance, a real life project instances from India (retrieved from 

Kannimuthu et al. (2020), and standard benchmark instances from multi-mode and multi-

project case are used to evaluate the performance of SOS. All dataset will be tested with 

mono-project approach, with the addition of random-key (RK) representations, parallel 

schedule generation scheme (P-SGS), and forward backward scheduling to the framework. 

The results of the real project instances will be compared with other popular metaheuristics 

algorithms such as genetic algorithm (GA) and particle swarm optimization (PSO) to evaluate 

the performance of SOS in solving MRCMPSP.  
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2. LITERATURE REVIEW 

2.1. Resource Constrained Project Scheduling Problem 

The basic concept of RCPSP can be described as follows. A project consists of a set activities 

b (b= 1, 2, …, B). The precedence relations between the activities are Finish-Start (FS) which 

implies that activity b cannot be start until all its predecessors have finished. Each activity can 

be processed within a duration db without preemption once started. In addition, there are K 

types of renewable resources available for the project. For each resource k (k= 1, 2, …, K) its 

availability is constant per day as Rk, and the resource usage required for each activity is 

denoted as rbk. The activities 1 and B are dummy activities that represents the start and finish 

of the project, which neither consume time and resources. Thus, d1 = dB = 0 and r1k = rBk = 0.  

 

Activities in B are related by the following types of constraints: (1) precedence constraints 

guarantee that each activity (i ∈ B) does not start until all of its predecessor activities (h ∈ Pi) 

have finished (Pi is a set of the predecessors of activity i); (2) The total amount of resource 

type k required for all activities being processed cannot exceed Rk in any processing time 

period. All information is assumed to be deterministic and known from early. The parameters 

are assumed to be non-negative and integer valued. The general objective is to minimize the 

makespan of the project by determine the earliest project finish time under the foregoing 

constraints. 

2.2. Resource-Constrained Project Scheduling Problem (RCPSP) Classification 

The basic concept of RCPSP is as mentioned above. However, to fulfill practical needs, 

changes have to be made to the basic concept by the researchers over time. These type of 

changes divide the element of RCPSP into several type classifications (Hartmann & Briskorn, 

2010); (Habibi, Barzinpour, & Sadjadi, 2018), that can be seen on Figure 1. 

 

Figure 1. RCPSP classifications 
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The five types of classifications which are, (1) type of resources: renewable, and non-

renewable; (2) concept of the activities: preemptive, multi-mode RCPSP, etc; (3) objective 

function: single or multi objective; (4) information availability: deterministic or non-

deterministic; (5) number of projects: single project or multiple project. In addition, Blazewicz, 

Lenstra, and Kan (1983) have stated that RCPSP is a strong NP-hard problem. As a result, 

various methods are used according to the changes in the basic assumptions because it 

cannot be efficiently determined if the solution obtained is the optimal result for each problem. 

 

This study that can be seen from Figure 1, considers multiple renewable resources and non-

renewable resources as the type of resource constraints. At the activity level, this study 

addresses multi-mode with the basic assumption of RCPSP for non-preemptive scheduling, 

constant resource requests over time, and basic precedence relations. For the objective 

function, the basic objective function in this study is to minimize the project makespan (Cmax). 

For the information availability, this study adopts the standard deterministic method. Thus, all 

the project information was known from the start. For the number of projects, this study model 

multiple projects simultaneously with mono project approach. The mono-project approach is 

used because majority of the previous researches were developed for the mono-project 

approach. The mono-project approach also works well for the portfolio optimization in the set 

of projects, such as to minimize total makespan.  

2.3. Multi-Mode Resource-Constrained Multi Project Scheduling Problem (MRCMPSP) 

Multi-mode resource-constrained multi project scheduling problem (MRCMPSP) is the 

extension of RCPSP which considers multiple activity execution modes and multiple projects 

instead of the usual single mode and single project on RCPSP. Payne (1995) stated that up 

to 90% international projects are executed in a multi-project context. In addition, a studies from 

Maroto, Tormos, and Lova (1999) have shown that managers typically deal with up to four 

projects at once rather than one project only. Multiple modes allow time/cost, time/resource 

and resource/resource trade-offs to be considered (Wauters et al., 2014). Managing many 

projects using limited resources constraints to achieve high production efficiency and certain 

objective is more complicated than just considering a single project. The concept of 

MRCMPSP can be described as follows:  

1. A company portfolio consists of parallel projects a (a= 1, 2, …, A). Each project consists 

of several b (b= 1, 2, …, Ba) activities, and each activity also consists of several m (m= 1, 

2, …, Bam) execution modes.  

2. Similar to RCPSP, all the activities in MRCMPSP can start after all of its predecessors 

have finished, and each activity can be processed within a duration dabm in the respective 

mode without preemption once started.  

3. There are also K types of renewable resources and N types of non-renewable resources 

available for all the project. For each renewable resource k (k= 1, 2, …, K), its availability 

is constant per day as Rk, and the resource usage required for each activity in each project 

is denoted as rabmk. For each non-renewable resource n (n= 1, 2, …, N), its availability 

cannot be renewed and limited throughout the project as Rn, and the resource usage 

required for each activity in each project is denoted as rabmn.  

4. Both the renewable and non-renewable resources are independent and not interactive, 

which means that if one of the resources is limited, it will not affect the duration of the 

activity that has already been known from the start (deterministic). 
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5. For each time unit t in the schedule, the resource usage cannot exceed the availability of 

both Rk and Rn. If so, the feasible activities will have to be scheduled at a later time or to 

be scheduled with other execution modes to satisfy the resource constraints (further 

explain the point 4) 

6. The first and last activities of each project is a dummy start and finish which has single 

mode with zero duration and zero usage of resources.  

7. The main objective is to minimize the makespan (Cmax) of the project portfolio.   

As mentioned briefly in Section 1, there are 2 main approaches that have been used in a multi 

project environment (Figure 2): mono-project approach (centralized-RCMPSP) and multi-

project approach (decentralized-RCMPSP) (F. Villafáñez et al., 2014). In the mono-project 

approach, all projects are combined into one single mega project, thus reducing the RCMPSP 

to a RCPSP with a single critical path, a super-dummy start, and super-dummy end node 

(Browning & Yassine, 2010). In the multi-project approach, all the projects have separate 

critical paths per project, thus maintaining the RCMPSP.  

 

Figure 2. RCMPSP network model with two different approaches: (a) Mono-project approach. 

  (b) Multi-project approach; Source: (Kannimuthu et al., 2020). 

In the mono-project approach, it is also assumed that the company has the power to control 

all the project, or it can be said that only one project manager is responsible for scheduling 

and allocation of resources that can be shared between all projects for a mega network 

consisting of all the individual projects (F. Li, Xu, & Li, 2021). This study chooses to focus on 

the mono-project approach, because majority of the previous researches were developed for 

the mono-project approach. Thus, it is not easy to find benchmarking case or studies for the 

multi-project approach. Kannimuthu et al. (2020) also made a comparison between the mono-

project and multi-project approaches in multi-objective trade-off between time, cost, and 

quality MRCMPSP. They found that in a multi-project environment, the mono-project approach 

generates better schedules than the multi-project approach in the multi-objective optimization. 

The mono-project approach RCMPSP also works well for the portfolio optimization in the set 
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of projects, such as the objective on this study to minimize total makespan (Kurtulus & Davis, 

1982); (Özdamar & Ulusoy, 1995). When multiple projects are combined into a single mega 

project, it becomes similar to the single RCPSP, hence the method used for RCPSP can be 

used to solve the mono-project approach of MRCMPSP.  

Previous research in the multi-project environment mainly focused on using heuristic methods. 

Among them, heuristic relied on priority rules. One of the earliest studies about MRCMPSP 

has been done by Pritsker, Waiters, and Wolfe (1969) to develop integer programming 

formulation to solve multi-mode resource usage RCMPSP. Lova and Tormos (2001) studied 

the effect of schedule generation schemes and priority rules for RCMPSP and found that the 

parallel schedule generation scheme performed well compared to serial schedule generation 

scheme on multi-project scheduling problem. This study uses parallel schedule generation 

scheme (P-SGS) that does time incrementation to generate the schedule that will be further 

discussed on Section 3.  

Many metaheuristic methods have also been developed to solve the multi-project environment 

efficiently. Example such as, Linyi and Yan (2007) that employed PSO with one-point 

crossover approach to minimize the makespan of RCMPSP. Gonçalves, Mendes, and 

Resende (2008) developed GA using random keys representation for RCMPSP. Random key 

is one type of representations for decoding procedure to obtain feasible schedule which is 

comprised of real random numbers between 0 and 1. This study applied random key (RK) 

representation that will also be further discussed on Section 3. Chen and Shahandashti (2009) 

applied a hybrid metaheuristic, GA and simulated annealing (SA) to solve RCMPSP with 

multiple resource constraints, to three real project instances which have different types of 

precedence relations. Sonmez and Uysal (2015) presented a backward-forward hybrid genetic 

algorithm (BFHGA) for optimal scheduling on multi-project instances. And, Kannimuthu et al. 

(2020) used a direct search algorithm called probabilistic global search Lausanne to solve 

MRCMPSP with the multi-objective trade-offs among time, cost, and quality. 

 

3. RESEARCH METHODOLOGY 

In this study the proposed SOS will be used with RK representation, P-SGS, and forward-

backward scheduling to obtain the feasible schedule. A simple project example with single 

project case and two execution modes from Zhang (2012) is used to easily described the 

process. The single project case can be used because the multiple projects on this study are 

also combined into a single mega project (mono-project approach), thus it becomes similar to 

the single project. 

3.1. Basic Symbiotic Organisms Search (SOS) 

SOS developed by Cheng and Prayogo (2014), is a simple and powerful metaheuristic 

optimization algorithm that can be used in various problem. SOS employs a population-based 

search strategy to search for the optimal solution to a specific objective function, and it 

simulates symbiotic interaction strategies that organisms use to live inside the ecosystems. A 

main advantage of the SOS algorithm over other metaheuristic algorithms is that its operations 

does not have any tuning parameters. Thus, it does not require tuning at all. SOS begins with 

an initial population called the ecosystem. In the initial ecosystem, a group of organisms is 

generated randomly within the search space. Each organism represents one candidate 

solution to the corresponding problem. Each organism in the ecosystem is associated with a 
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certain fitness value, which reflects degree of adaptation to the desired objective. In every 

iteration, a new generation consisted of new organisms is generated based on biological 

interaction between two organisms in the ecosystem. Three symbiosis phases that resemble 

the real-world biological interaction model are used in SOS. The three phases include: 

mutualism, commensalism, and parasitism phase. Each organism interacts with other 

organism randomly through all phases. The process is then repeated until the stopping criteria 

is met. 

3.2. SOS Proposed Framework for MRCMPSP 

The preceding general SOS concept will serve as the basis for developing the framework of 

MRCMPSP as can be seen on Figure 3. 

 

Figure 3. SOS for MRCMPSP flowchart 

To start with SOS or any other metaheuristic method, one has to select a suitable 

representation for solutions. Metaheuristic approaches for RCPSP usually are operate on 

representations of schedules than on schedules themselves (Kolisch & Hartmann, 1999). After 

the population is generated, an appropriate decoding procedure must be selected to transform 

the representation into a feasible schedule. Finally, similar to other population-based 

metaheuristic methods, an evolutionary strategy of SOS which combines mutualism, 

commensalism, and parasitism phase are needed to generate new individuals to produce 

possible better solution.  
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The following sub-sections will describe the proposed framework in detail, using a case from 

Zhang (2012) that can be seen on Figure 4 and Table 1. There are 6 activities, 2 modes, and 

1 renewable resource with 4/day capacities. The mode predefined all the resources in to one 

set of a mode, which means that in each mode, all activities will have the same type of 

resource used on other mode, but with different resource requirement and duration. It is also 

assumed that the relation between the duration and resource requirement may not be linear. 

 

Figure 4. Project example; Source: (Zhang, 2012) 

 

Table 1. Information about the example project case 

Activity 

Mode 1 Mode 2 

Resource 

requirement 
Duration 

Resource 

requirement 
Duration 

1 2 3 1 4 

2 3 4 2 6 

3 4 2 2 3 

4 4 2 3 3 

5 3 1 1 3 

6 2 4 1 6 

 

3.2.1. Encoding Scheme (Organism Representation) 

There are five representations that have been used and reviewed in the previous literature for 

the encoding scheme (Kolisch & Hartmann, 1999), which are activity list (AL), RK, priority rule 

(PR), shift vector (SV), and schedule scheme (SS). This study used RK Representations. In 

the RK scheme, a series of array is provided according to the number of activities. The RK 

value will represent the activity priority and the RK position showed the activity index. In Figure 

5, the RK scheme example from project example is presented. The first column represented 

the activity number 1 (dummy start) and the value inside represents the organism priority 

position.  

 

0.52 0.51 0.59 0.69 0.1 0.31 0.46 0.72 

Figure 5. RK scheme from project example 
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In SOS, an organism of candidate solutions represents a potential solution, subject to the 

objective function. As mentioned above, each organism consists of an array. Each organism 

of the SOS consists of ∑ 𝑁21  number of array elements, which are real numbers between 0-1. 

Where N is the total number of activities from all project, and the real numbers between 0-1 

showed the organism priority position. The first N array elements will represent the organism 

position for each activity, and the last N array elements will represent the organism position 

for the mode used in each activity.  In Figure 6, it can be seen that the RK has 16 array 

elements for 8 activities. Whereas the first 8 array elements are each activity position from all 

project (in this case it only has 1 project), and the last 8 array elements indicate the mode 

used for each activity. 

0.52 0.51 0.59 0.69 0.1 0.31 0.46 0.72 0.91 1.00 0.33 1.00 0.33 0.41 0.37 0.05 

 

Figure 6. RK Representations used on this thesis 

 

3.2.2. Initialize Population 

After the encoding process is completed, SOS begins with an initial population called the 

ecosystem. A group of organisms is then generated randomly within the search space. Each 

organism represents one candidate solution and is associated with a certain fitness value 

which is the project makespan. Control parameters include, the number of solutions, stopping 

criteria, and the maximum number of iterations. 

3.2.3. Decoding Scheme (Schedule Generation Scheme) 

The schedule generation scheme (SGS) is the core of most heuristic procedure in RCPSP 

problem (Kolisch, 1996). SGS is a technique that decode the encoding scheme representation 

to build a feasible schedule from scratch into a valid complete schedule, subject to precedence 

and resource constraints. There are only two types of SGS available which are serial schedule 

generation scheme (S-SGS) and parallel schedule generation scheme (P-SGS). Both 

schemes choose activities from the priority list and add them to a partial schedule until all 

project activities are assigned into complete schedule. This study uses the P-SGS for the 

decoding scheme to construct the feasible schedule.  

P-SGS uses the time incrementation approach in their principal. It consists of c =1, …, n turn, 

each has a schedule time tc. P-SGS iterates over the time horizon tc which start with tc=0 and 

add activities that are eligible to be scheduled as the time increased. Associated with time tc 

there are three separate activity sets which are the scheduled set (Sc), active set (Ac), and 

feasible set (Fc). Sc consists of all the activities that have been scheduled until tc. Ac consists 

of the activities that are active at tc. And Fc comprises of the activities that are eligible to be 

scheduled. Sc, Ac, and Fc on the P-SGS are different from the set of all activities B. Table 2 

shows the process of P-SGS for the example case.  

Table 2. P-SGS example 

c(turn) 1 2 2 3 4 4 5 6 

tc 0 0 0 4 6 6 10 11 

Fc [0] [1,2] [2,3] [3,4] [3,6] [5,6] [5] [7] 

s 0 1 2 4 3 6 5 7 

Position of each activity from all project  Mode used position from each activity 
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3.2.4. Forward-Backward Scheduling 

In the previous sub-section, the P-SGS is used as the decoding scheme to construct a feasible 

schedule. The P-SGS sequentially schedules the activities based on the time incrementation, 

at their earliest precedence and resource feasible start time (forward-scheduling), according 

to the organism RK priority positions. The P-SGS could also be executed in the reverse time 

direction (backward-scheduling). The forward and backward scheduling procedure was first 

proposed by K. Y. Li and Willis (1992). Backward scheduling applies the P-SGS to the 

reversed precedence network where the dummy finish become the new dummy start and vice-

versa. After that, all the activities are scheduled in a reverse direction from forward scheduling 

until the schedule is complete.  

Because the exact duration of the feasible schedule is not known in backward scheduling, 

usually an arbitrary project completion time or the early finish time from forward scheduling is 

selected to start the backward scheduling (Sonmez & Uysal, 2015). To simplify the procedure, 

on Figure 9 the start time of backward scheduling (dummy finish) is set to be 0. After the 

schedule is complete until the dummy start, the fitness value of project duration can be known 

automatically similar to forward scheduling. The proposed algorithm employs P-SGS in order 

to iteratively schedule both forward and backward scheduling in each iteration. Then, the 

proposed algorithm will choose the minimum duration from between for each organism, and 

store the result as the fitness value. Figure 7 illustrate the forward scheduling for the example 

case, while the normal and proposed backward scheduling can be seen in Figure 8 and 9.  

 
Figure 7. Forward scheduling from project example 

 

 
Figure 8. Normal backward scheduling from project example 
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Figure 9. Backward scheduling example from project case (the method used on this study) 

 

3.2.5. Evolution Strategy 

In order to generate new solutions for the next iteration, almost all metaheuristic algorithms 

apply a succession of operations to solutions after each iteration (Cheng & Prayogo, 2014). 

GA has two operators which are crossover and mutation, while PSO updates the solution 

through pbest and gbest. In SOS, the evolution comes from the 3 ecosystems phase which 

are mutualism, commensalism, and parasitism that have been mentioned in the previous 

section.  In each ecosystem phase, the old organism can be replaced by a potential new 

organism if the fitness value of the latter is better. In this study, the ecosystem searches for 

better solution by updating the organism positions as the decision variables, which are the 

random-key values in each of the three phases after every iteration. When the stopping criteria 

or the number of maximum iterations were met, the algorithm will stop with the shortest project 

makespan as the optimal solution.  

3.3. Software for System Development 

This study implements the proposed algorithm in Python language (version 3.8) on Spyder 

software to solve the MRCMPSP. The machine is a personal computer with a speed of 2.9 

GHz Intel Core i5-10400 CPU and 8 GB RAM. 

 

4. CASE STUDY 

The performance of SOS in solving MRCMPSP problem will be tested using several case 

studies, which are standard benchmark instances of MRCPSP and RCMPSP, and real project 

instances of MRCMPSP. The benchmark instances are used to evaluate the general 

performance of SOS in theoretical cases, whereas the real project instances are used to 

validated the performance of SOS in practical MRCMPSP problems. 

4.1. Evaluation Testing with Benchmark Instances 

First, to evaluate the performance of SOS and the proposed algorithm, comparisons are made 

in well-known standard benchmark problems of project scheduling. Because there is no open 

standard benchmark problem for the MRCMPSP problem, the benchmark problem from the 

MRCPSP (multi-mode & single-project) and RCMPSP (single-mode & multi-project) case is 

used to compare the results of SOS with the best known solution (BKS).  The benchmark 

problems for the MRCPSP are obtained from Project Scheduling Problem Library by (Kolisch 



Hodianto: Multi-Mode Resource Constrained Multi Project Scheduling Problem Optimization 

88 

 

& Sprecher, 1997) (PSPLIB, http://www.om-db.wi.tum.de/psplib/getdata_mm.html) and (Van 

Peteghem & Vanhoucke, 2014) (MMLIB, 

https://www.projectmanagement.ugent.be/research/data). While the benchmark problems for 

the RCMPSP are obtained from (Homberger, 2007) (MPSPLib, 

http://www.mpsplib.com/index.php) and (Vázquez, Calvo, & Ordóñez, 2015) (RCMPSPLIB, 

https://www.eii.uva.es/elena/RCMPSPLIB.htm). The population size is set to be 100, while the 

maximum number of iterations is set to be 1000. The evaluation results are summarized on 

Table 3 – Table 6. 

The 20 tested instances chosen from PSPLIB are summarized on Table 3. The BKS are the 

time makespan best known solution computed by various method from the past to the PSPLIB 

library. The results from table 3 indicated that SOS is able to solve the MRCPSP PSPLIB 

problem very well. From 20 tested instances, SOS was able to determine the optimal solution 

in 19 instances, whereas on instance j3021_2 SOS was only able to obtain a near-optimal 

solution from the BKS with 1 day difference (2.94% deviation). In average, the percent 

deviation from BKS of the 20 tested instances is 0.15%.  

Table 3. Results from PSPLIB instances 

No 
MRCPSP 
PSPLIB 

BKS SOS 
Dev from 
BKS (%) 

1 j1026_1 14 14 0 

2 j1026_3 16 16 0 

3 j1019_1 13 13 0 

4 j1019_2 15 15 0 

5 j1020_3 21 21 0 

6 j2064_1 21 21 0 

7 j2064_2 23 23 0 

8 j2064_3 23 23 0 

9 j2064_4 19 19 0 

10 j2064_5 26 26 0 

11 j3021_1 38 38 0 

12 j3021_2 34 35 2.94 

13 j3021_3 36 36 0 

14 j3021_4 37 37 0 

15 j3021_5 37 37 0 

16 j3010_1 26 26 0 

17 j3010_2 28 28 0 

18 j3010_3 24 24 0 

19 j3010_4 36 36 0 

20 j3010_5 33 33 0 

 
 

The 20 tested instances chosen from MMLIB are summarized on Table 4. The BKS are the 

time makespan best known solution computed by various method from the past to the MMLIB 

library. Table 4 shows that the performance of SOS in large scale instances MRCPSP is not 

that good compared to the smaller problem MRCPSP from PSPLIB library. Given that 

MRCPSP with 2 or more non-renewable resources is NP-complete problem in the strong 

sense (Kolisch & Drexl, 1997), consequently, the difficulty to solve the problem will increase 

as the size of the problem increases. It can be seen from the results with 3 modes, from 

MMLIB50 and MMLIB100 subset (number 1-10), that SOS is still able to find the optimal or 

near optimal solution in 6 problems, out of 10 problems given. While on the larger instances 

https://www.projectmanagement.ugent.be/research/data
http://www.mpsplib.com/index.php
https://www.eii.uva.es/elena/RCMPSPLIB.htm
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from MMLIB+ (number 11-20), the deviation from BKS solution become bigger. The average 

results deviation for the tested instances with 50 activities and 9 modes are 16.9%, and for 

the tested instances with 100 activities and 6 modes are 21.15%. The average results 

deviation from all tested instances from MMLIB is 10.4%.   

Table 4. Results from MMLIB instances 

No MRCPSP 

MMLIB 
BKS SOS 

Dev from 

BKS (%) 

1 J503_1 19 19 0 

2 J503_2 20 20 0 

3 J503_3 18 19 5.56 

4 J503_4 23 23 0 

5 J503_5 18 19 5.56 

6 J10051_1 32 32 0 

7 J10051_2 34 34 0 

8 J10051_3 32 33 3.13 

9 J10051_4 39 39 0 

10 J10051_5 29 30 3.45 

11 Jall217_1 103 123 19.42 

12 Jall217_2 86 102 18.60 

13 Jall217_3 86 99 15.12 

14 Jall217_4 83 96 15.66 

15 Jall217_5 121 140 15.70 

16 Jall500_1 100 125 25 

17 Jall500_2 88 108 22.73 

18 Jall500_3 78 94 20.51 

19 Jall500_4 94 112 19.15 

20 Jall500_5 98 116 18.37 

 
 

The 10 tested instances chosen from MPSPLib are summarized on Table 5. The BKS are the 

time makespan best known solution computed by various method from the past to the 

MPSPLib library. Table 5 shows that the proposed SOS algorithm can get similar results with 

the BKS in 4 out of 10 tested instances (mpj90a2agentcopp5, mpj90a5agentcopp1, 

mpj90a20agentcopp2, mpj120a2agentcopp5). While in the other 6 tested instances the 

average deviation from the BKS are just 2.24%, with the largest are mpj120a10agentcopp3 

instance with 4.77% difference (22 days) from the BKS. The average results deviation from all 

tested instances is 1.57%. 

Table 5. Results from MPSPLib instances 

No RCMPSP MPSPLIB BKS SOS 
Dev from 
BKS (%) 

1 mpj90a2agentcopp2 330 336 1.82 

2 mpj90a2agentcopp5 72 72 0 

3 mpj90a5agentcopp1 568 568 0 

4 mpj90a10agentcopp10 170 174 2.35 

5 mpj90a20agentcopp2 127 127 0 

6 mpj120a2agentcopp1 212 218 2.83 

7 mpj120a2agentcopp5 95 95 0 
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No RCMPSP MPSPLIB BKS SOS 
Dev from 
BKS (%) 

8 mpj120a5agentcopp8 527 533 1.14 

9 mpj120a10agentcopp3 461 483 4.77 

10 mpj120a20agentcopp6 863 887 2.78 

 
 

The 14 tested instances chosen from RCMPSPLIB are summarized on Table 6. The BKS are 

the time makespan best known solution available on the RCMPSPLIB library. The results from 

Table 6 showed that the SOS algorithm able to outperforms the previous best known solutions 

from Vázquez et al. (2015) in 10 of the 14 tested instances, and performs as good as the 

previous best known solutions in 2 of the 14 tested instances . Whereas for the other 2 

instances, the average deviation from the BKS are 3.34%, with the largest are found on the 

instance mpj30a2, that have 3.54% difference from the BKS (4 days). The average results 

deviation from BKS of all RCMPSPLIB tested instances is -1.88%.  

Table 6. Results from RCMPSPLIB instances 

No 
RCMPSPLIB                                     

(Vazquez et al., 2013) 
BKS SOS 

Dev from 

BKS (%) 

1 mpj30a2 113 117 3.54 

2 mpj30a4 228 223 -2.19 

3 mpj30a6 153 150 -1.96 

4 mpj30a10 313 300 -4.15 

5 mpj60a2 117 111 -5.13 

6 mpj60a3 276 263 -4.71 

7 mpj60a4 356 341 -4.21 

8 mpj60a5 149 149 0 

9 mpj90a2 90 89 -1.11 

10 mpj90a3 390 374 -4.10 

11 mpj90a4 698 683 -2.15 

12 mpj90a5 114 114 0 

13 mpj120a2 181 175 -3.31 

14 mpj120a3 511 527 3.13 

 

This evaluation results particularly show that the SOS is able to solve complex multi-project 

scheduling problems relatively well from the 2 benchmark instances that have been used from 

MPSPLib and RCMPSPLIB. Although, for the instances with a relatively large number of 

activities (more than 1000 activities) such as the MPSPLib problem from MMLIB library, the 

results of SOS are particularly not that good.  

4.2. Validation Testing with MRCMPSP Real Case 

MRCMPSP real project instances, retrieved from Kannimuthu et al. (2020) is used to validate 

the performance of SOS. The result of SOS will be compared with two other popular 

metaheuristics algorithms, GA and PSO. The original data also consists of cost and quality 

value, along with related constraints. The objective function is to find the optimal trade-off 

relationship among time, cost, and quality. However, this study ignored both the cost and 

quality data and focus on the single objective to search the minimal total makespan of multiple 

projects.  
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4.2.1. Project Information 

The data contains of 3 building construction projects from India (Kannimuthu et al., 2020), 

namely, projects X, Y, and Z. Project X has 32 activities, project Y has 28 activities, and project 

Z has 18 activities. The estimated total combinations of the data are 14.9132 for project X, 

18.6128 for project Y, and 18.6118 for project Z, where the base numbers (14.91 and 18.61) 

are the average number of execution modes for each activity, and the exponent is the number 

of activity The activities that are considered in the schedule are for the construction of the first 

two floors of the above projects, which include: formwork, rebar/reinforcement, concreting, 

block work, plastering, painting, and flooring. In addition, the data also consists of 22 

renewable resources to be shared among all projects. 

Because this study models the projects in a mono-project approach, the precedence network 

of project X, Y, and Z need to be combined into single mega project with one dummy start and 

finish. The activity number are also changed to be continuous for every project, based on the 

last activity number of the previous project. The combined precedence network of project X, 

Y, and Z can be seen in Figure 10. The activity number 1 is the dummy start and activity 

number 80 is dummy finish.  

 

Figure 10. Combined precedence network 

 

4.2.2. Parameter Selection 

As mentioned in Section 1, the optimization results of SOS in this case will be compared with 

the results from GA and PSO. In SOS each iteration generated 4 function evaluations, 

whereas in GA and PSO each iteration generated 1 function evaluation. To compare it equally, 

the number of objective function evaluation for all the three algorithms must be the same. Thus, 

the number of iterations in GA and PSO need to be multiplied by 4 to make it comparable. The 

population size and the number of iterations of SOS are set to be 100 and 500 respectively. 

The 500 iterations are involved with 2000 calls for the objective function. Therefore, the 

population size and number of iterations of GA and PSO are set to be 100 and 2000 



Hodianto: Multi-Mode Resource Constrained Multi Project Scheduling Problem Optimization 

92 

 

respectively. The larger the population size and number of iterations allows for more 

computations and may lead to better objective function values. The parameters used for SOS, 

GA, and PSO in this real case study projects are summarized in Table 7.  

Table 7. Parameter selection 

Metaheuristics Parameters Value 

SOS 

Pop size 100 

Number of max. iterations 500 

Number of objective functions called 2000 

GA 

Pop size 100 

Number of max. iterations/ obj. functions called 2000 

C_rate [0,6-1.0] 

M_rate [0,01-0,25] 

PSO 

Pop size 100 

Number of max. iterations/ obj. functions called 2000 

inertia weight (w) w(1)= 0,9; w(T)=0,1 

c1  2 

c2  2 

vmax  0.3 

 

4.2.3. Results and comparison 

Metaheuristics are stochastic search. The performance therefore should be evaluated by 

statistical tests. For this case, 10 runs of experiments are carried out for every of the three 

metaheuristics methods. The statistics of the performances are completed and summarized 

on Table 8. The optimal solutions of minimum duration (Cmax), average project duration, and 

standard deviation from the 10 runs of experiments are used for comparison between SOS, 

GA, and PSO.  

Table 8. Results SOS, GA, and PSO from 10 experiments 

Metaheuristics 
Minimal project 

duration (Cmax) 

Average 

project 

duration 

Standard 

Deviation (SD) 

SOS 98 98.4 0.70 

GA [0,6;0,01] 107 107.6 0.97 

GA [0,8;0,15] 106 107.1 0.88 

GA [1,0;0,25] 106 107.4 0.84 

PSO 100 104.6 2.27 

 

The results from Table 8 shows that SOS achieved better results in all minimal project duration, 

average project duration, and standard deviation compared to GA and PSO. SOS is able to 

obtain the minimal project duration of 98 days, followed by PSO 100 days, and GA 106 days. 

For the average project duration, SOS achieved the best average results of 98.4 days from 

10 run of experiments, followed by PSO 104.6 days, and GA 107.1 days with crossover 

rate=0,8 and mutation rate=0,15. While for the standard deviation, SOS able to achieved the 

lowest standard deviation of 0.70 compared to 0.84 for GA with crossover rate=1,0 and 

mutation rate=0,25 and 2.27 for PSO. 

The convergence from the best results of the 3 metaheuristics method are shown and 

compared in Figure 11. The y axis in the figure is limited in range 95-180 days to make the 
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comparison easier to see. The figures show how the SOS, GA, and PSO achieved the results 

through the number of objective function-called and converging to the optimal solution.  The 

figures show that GA and PSO converging faster to their optimal solution compared to SOS. 

For example, take the 110 days as the criterion. It can be seen that GA only needs a couple 

of objective function-called to achieve the results of 110 days, followed by PSO who needs 

around 125 number of objective function-called, while SOS needs around 250 objective-

functions called to obtain the results.  However, despite having the slowest convergence rate, 

SOS is able to achieved the most optimal results of 98 days at the end of the iterations. Thus, 

it also can be said that SOS can escape from the local optima solution compared to GA and 

PSO, to achieved better global solution. 

 

 

Figure 11. Graphs of convergence comparison 

 

5. CONCLUSIONS 

The primary purpose of this study is to minimized the total makespan (Cmax) from the 

MRCMPSP, while must satisfy the precedence and resource constraints. To achieve this 

purpose, this study proposed metaheuristic method SOS along with RK representations, P-

SGS, and forward backward scheduling in one framework, to find feasible schedule and the 

minimal project duration of the project portfolio. The proposed SOS system along with RK 

representations, P-SGS, and forward-backward scheduling are combined in one framework 

to find the feasible schedule and the minimal project duration. To test the performance of the 

proposed system, several case studies, which are standard benchmark instances of MRCPSP 
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and RCMPSP, and real project instance of MRCMPSP are used to evaluate and validate the 

performance of SOS. Furthermore, in the real project instance the performance of SOS is 

compared with other metaheuristics methods: GA and PSO.  

The evaluation results from standard benchmark instances of MRCPSP and RCMPSP 

(retrieved from: PSPLIB, MMLIB, MPSPLib, and RCMPSPLIB) show that SOS can achieve 

the best-known solution in some of the tested instances and also outperforms/ achieve better 

solution in 10 out of 14 RCMPSPLIB instances. However, when the problem is more complex 

(i.e. many modes and many project activities) the algorithm may not always reach the best-

known solution results. Thus, in the future, further work is still needed to try combined and 

improve different features of encoding and decoding scheme (i.e: AL representations, S-SGS, 

etc) for the performance of SOS, to potentially achieved better results. The average deviation 

from BKS in the 4 benchmark libraries is 0.15% in PSPLIB, 10.4% in MMLIB, 1.57% in 

MPSPLib, and -1.88% in RCMPSPLIB.  

The validation results from real project case of MRCMPSP from Kannimuthu et al. (2020) 

show that SOS is able to achieved better solutions compared to GA and PSO in all minimal 

project duration (Cmax), average project duration, and standard deviation in 10 runs of 

experiment. SOS found a minimal project duration of 98 days compared to 100 days for PSO, 

and 106 days for GA. For the average project duration, SOS average 98.4 days from the 10 

experiments, compared to 104.6 days and 107.1 days for PSO and GA respectively. While for 

the standard deviation, SOS achieved the lowest SD with 0.70 compared to 0.84 and 2.27 for 

GA and PSO respectively. It was also shown from the graphic of convergence that SOS takes 

more objective function calls to achieve the optimal solutions compared to GA and PSO. 

However, SOS able to achieve better minimal project duration (Cmax) and average project 

duration, which indicates that SOS will not premature/ be trap in the local optima solution and 

can escape to achieve better global solutions. Furthermore, SOS also able to achieved the 

lowest standard deviation compared to GA and PSO, which indicate that it can produce the 

most consistent results with low variance. 

For the future research, several suggestions were proposed in response to this study results. 

The first one, future research could integrate different features of encoding and decoding 

schemes with the proposed framework (i.e: AL Representations and SSGS), to seek better 

performance. Future study can also consider other classifications such as allowed activity 

preemption, non-deterministic information, or other objective functions, such as cost-based 

objective (i.e: maximize Net Present Value), resource-based objective (i.e. minimize resource 

utilization), as well as the tradeoff between time and cost.  
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