
Dimensi Utama Teknik Sipil, Vol.9 No.1 April 2022 DOI: 10.9744/duts.9.1.77-96

77

MULTI-MODE RESOURCE CONSTRAINED MULTI PROJECT SCHEDULING

PROBLEM OPTIMIZATION WITH SYMBIOTIC ORGANISMS SEARCH

Valentinus Alvin Hodianto1, I-Tung Yang2

1 Graduate Student of Civil and Construction Engineering, National Taiwan University of

Science and Technology, 2 Professor at National Taiwan University of Science and

Technology, Taiwan

1 alvin9739@gmail.com, 2 ityang@mail.ntust.edu.tw

ABSTRACT: Multi-mode resource-constrained multi project scheduling problem (MRCMPSP)

is the extension of standard resource constrained project scheduling problem which considers

multiple activity execution modes and multiple projects, subject to precedence and resource

constraints. Multiple execution modes allow the activities to have different duration and

resource requirement. Furthermore, companies and project managers normally also handle

many projects. This study proposed metaheuristic method symbiotic organisms search (SOS)

along with random-key representations, parallel schedule generation scheme (P-SGS), and

forward backward scheduling, to find the feasible schedule and minimal project duration of the

project portfolio. The evaluation results from standard benchmark instances shows that SOS

can get the best solution in most of the tested instances and also achieve better solution in

some of them. The validation results from real project case MRCMPSP show that SOS has

better performance than other tested metaheuristic methods, namely GA and PSO. Thus,

validate the performance of SOS.

Keywords: multi-mode resource constrained multi project scheduling problem (MRCMPSP),

metaheuristic, symbiotic organisms search (SOS)

1. INTRODUCTION

The lack of project scheduling is often regarded as one of the main reasons for project delays

(Herroelen & Leus, 2005). Project scheduling can be defined as finding a start and finish time

for all the activities, under certain constraints such as precedence relations, temporary

restrictions and resource constraints, while a predefined scheduling objective is optimized

(Félix Villafáñez, Poza, López-Paredes, Pajares, & Olmo, 2019). In the past decades there

were two methods that have been mainly used to determine project scheduling: critical path

method (CPM) and program evaluation and review technique (PERT). CPM and PERT usually

assume that resources are unlimited and always available at the time of the activity execution

(Bettemir Önder & Sonmez, 2015). This assumption may be unrealistic because resources

https://doi.org/10.9744/duts.9.1.77-96

Hodianto: Multi-Mode Resource Constrained Multi Project Scheduling Problem Optimization

78

are usually shared between several activities and even several projects. Thus, these resource

constraints often turn into a complex scheduling problem that is difficult to solve.

The Resource-Constrained Project Scheduling Problem (RCPSP) involves assigning a

resource or set of resources to activities in the project with limited resource capacity, that are

more realistic than CPM and PERT, in order to meet some predefined objective, such as

minimized project timespan and cost (Yang, Geunes, & O'Brien, 2001). RCPSP could be

extent based from the project environment and activity execution modes which are: resource-

constrained multi project scheduling problem (RCMPSP), multi-mode resource constrained

project scheduling problem (MRCPSP), and multi-mode resource constrained multi project

scheduling problem (MRCMPSP).

Compared to other variations, MRCMPSP has the highest complexity and reflect higher

practical relevance (Kannimuthu, Raphael, Ekambaram, & Kuppuswamy, 2020). In real-life

scheduling situations, companies and project managers do not normally handle a single

project but many projects (F. Villafáñez, López-Paredes, & Pajares, 2014). The addition of

multiple execution modes is also one of the extension of RCPSP that allows the activities to

have different duration and resource requirement (Sonmez & Gürel, 2016).

When dealing specially with the case of multi-project, there are two kinds of approaches that

have been used: the first one is a mono-project approach, using dummy activities and

precedence relations to combine the projects into a single mega-project, therefore simplify the

multi-project into single-project with a single critical path. The second is a multi-project (MP)

approach, maintaining the RCMPSP and a separate critical path per project (Kurtulus & Davis,

1982). This study uses the mono-project approach, combining all the project into single mega

project with one critical path (centralized method).

Several techniques have been developed to solve the resource constrained scheduling

problem. These techniques include exact methods, heuristics, and metaheuristic methods.

When the project becomes larger with more than 50 activities and 3 or more execution modes,

the exact methods are less efficient that makes heuristics and metaheuristics methods more

preferable and suggested (Alcaraz & Maroto, 2001). Although many studies have been done

about MRCPSP (multi-mode single project case) and RCMPSP (single-mode multi project

case), there are less works that have combine both of the problem. Recently, the field of

nature-inspired metaheuristics optimization algorithms (inspired by nature biological evolution)

has grown very fast. One of them is symbiotic organisms search (SOS), that have been found

by Cheng and Prayogo (2014). SOS is a powerful metaheuristic algorithm inspired by

interaction between two biological organisms known as “symbiosis”. This study adopts SOS

as the optimization algorithm to to minimize the total project makespan (Cmax) from all the

project included in MRCMPSP, while satisfy the precedence and resource constraints.

To validate the performance, a real life project instances from India (retrieved from

Kannimuthu et al. (2020), and standard benchmark instances from multi-mode and multi-

project case are used to evaluate the performance of SOS. All dataset will be tested with

mono-project approach, with the addition of random-key (RK) representations, parallel

schedule generation scheme (P-SGS), and forward backward scheduling to the framework.

The results of the real project instances will be compared with other popular metaheuristics

algorithms such as genetic algorithm (GA) and particle swarm optimization (PSO) to evaluate

the performance of SOS in solving MRCMPSP.

Dimensi Utama Teknik Sipil, Vol.9 No.1: 77-96

79

2. LITERATURE REVIEW

2.1. Resource Constrained Project Scheduling Problem

The basic concept of RCPSP can be described as follows. A project consists of a set activities

b (b= 1, 2, …, B). The precedence relations between the activities are Finish-Start (FS) which

implies that activity b cannot be start until all its predecessors have finished. Each activity can

be processed within a duration db without preemption once started. In addition, there are K

types of renewable resources available for the project. For each resource k (k= 1, 2, …, K) its

availability is constant per day as Rk, and the resource usage required for each activity is

denoted as rbk. The activities 1 and B are dummy activities that represents the start and finish

of the project, which neither consume time and resources. Thus, d1 = dB = 0 and r1k = rBk = 0.

Activities in B are related by the following types of constraints: (1) precedence constraints

guarantee that each activity (i ∈ B) does not start until all of its predecessor activities (h ∈ Pi)

have finished (Pi is a set of the predecessors of activity i); (2) The total amount of resource

type k required for all activities being processed cannot exceed Rk in any processing time

period. All information is assumed to be deterministic and known from early. The parameters

are assumed to be non-negative and integer valued. The general objective is to minimize the

makespan of the project by determine the earliest project finish time under the foregoing

constraints.

2.2. Resource-Constrained Project Scheduling Problem (RCPSP) Classification

The basic concept of RCPSP is as mentioned above. However, to fulfill practical needs,

changes have to be made to the basic concept by the researchers over time. These type of

changes divide the element of RCPSP into several type classifications (Hartmann & Briskorn,

2010); (Habibi, Barzinpour, & Sadjadi, 2018), that can be seen on Figure 1.

Figure 1. RCPSP classifications

RCPSP
Classifications

Type of resources

Renewable
resources

Non-renewable
resources

Other type of
resources

Activities concept

Preemptive/non-
preemptive

Resource request
over time

Single/multi mode

Precedence
relations

Objective function

Minimized
timespan (Cmax)

Economic based

Resource based

Multi-objective

Information
availability

Deterministic

Non-deterministic

Number of
projects

Single project

Multi project
(RCMPSP)

Hodianto: Multi-Mode Resource Constrained Multi Project Scheduling Problem Optimization

80

The five types of classifications which are, (1) type of resources: renewable, and non-

renewable; (2) concept of the activities: preemptive, multi-mode RCPSP, etc; (3) objective

function: single or multi objective; (4) information availability: deterministic or non-

deterministic; (5) number of projects: single project or multiple project. In addition, Blazewicz,

Lenstra, and Kan (1983) have stated that RCPSP is a strong NP-hard problem. As a result,

various methods are used according to the changes in the basic assumptions because it

cannot be efficiently determined if the solution obtained is the optimal result for each problem.

This study that can be seen from Figure 1, considers multiple renewable resources and non-

renewable resources as the type of resource constraints. At the activity level, this study

addresses multi-mode with the basic assumption of RCPSP for non-preemptive scheduling,

constant resource requests over time, and basic precedence relations. For the objective

function, the basic objective function in this study is to minimize the project makespan (Cmax).

For the information availability, this study adopts the standard deterministic method. Thus, all

the project information was known from the start. For the number of projects, this study model

multiple projects simultaneously with mono project approach. The mono-project approach is

used because majority of the previous researches were developed for the mono-project

approach. The mono-project approach also works well for the portfolio optimization in the set

of projects, such as to minimize total makespan.

2.3. Multi-Mode Resource-Constrained Multi Project Scheduling Problem (MRCMPSP)

Multi-mode resource-constrained multi project scheduling problem (MRCMPSP) is the

extension of RCPSP which considers multiple activity execution modes and multiple projects

instead of the usual single mode and single project on RCPSP. Payne (1995) stated that up

to 90% international projects are executed in a multi-project context. In addition, a studies from

Maroto, Tormos, and Lova (1999) have shown that managers typically deal with up to four

projects at once rather than one project only. Multiple modes allow time/cost, time/resource

and resource/resource trade-offs to be considered (Wauters et al., 2014). Managing many

projects using limited resources constraints to achieve high production efficiency and certain

objective is more complicated than just considering a single project. The concept of

MRCMPSP can be described as follows:

1. A company portfolio consists of parallel projects a (a= 1, 2, …, A). Each project consists

of several b (b= 1, 2, …, Ba) activities, and each activity also consists of several m (m= 1,

2, …, Bam) execution modes.

2. Similar to RCPSP, all the activities in MRCMPSP can start after all of its predecessors

have finished, and each activity can be processed within a duration dabm in the respective

mode without preemption once started.

3. There are also K types of renewable resources and N types of non-renewable resources

available for all the project. For each renewable resource k (k= 1, 2, …, K), its availability

is constant per day as Rk, and the resource usage required for each activity in each project

is denoted as rabmk. For each non-renewable resource n (n= 1, 2, …, N), its availability

cannot be renewed and limited throughout the project as Rn, and the resource usage

required for each activity in each project is denoted as rabmn.

4. Both the renewable and non-renewable resources are independent and not interactive,

which means that if one of the resources is limited, it will not affect the duration of the

activity that has already been known from the start (deterministic).

Dimensi Utama Teknik Sipil, Vol.9 No.1: 77-96

81

5. For each time unit t in the schedule, the resource usage cannot exceed the availability of

both Rk and Rn. If so, the feasible activities will have to be scheduled at a later time or to

be scheduled with other execution modes to satisfy the resource constraints (further

explain the point 4)

6. The first and last activities of each project is a dummy start and finish which has single

mode with zero duration and zero usage of resources.

7. The main objective is to minimize the makespan (Cmax) of the project portfolio.

As mentioned briefly in Section 1, there are 2 main approaches that have been used in a multi

project environment (Figure 2): mono-project approach (centralized-RCMPSP) and multi-

project approach (decentralized-RCMPSP) (F. Villafáñez et al., 2014). In the mono-project

approach, all projects are combined into one single mega project, thus reducing the RCMPSP

to a RCPSP with a single critical path, a super-dummy start, and super-dummy end node

(Browning & Yassine, 2010). In the multi-project approach, all the projects have separate

critical paths per project, thus maintaining the RCMPSP.

Figure 2. RCMPSP network model with two different approaches: (a) Mono-project approach.

 (b) Multi-project approach; Source: (Kannimuthu et al., 2020).

In the mono-project approach, it is also assumed that the company has the power to control

all the project, or it can be said that only one project manager is responsible for scheduling

and allocation of resources that can be shared between all projects for a mega network

consisting of all the individual projects (F. Li, Xu, & Li, 2021). This study chooses to focus on

the mono-project approach, because majority of the previous researches were developed for

the mono-project approach. Thus, it is not easy to find benchmarking case or studies for the

multi-project approach. Kannimuthu et al. (2020) also made a comparison between the mono-

project and multi-project approaches in multi-objective trade-off between time, cost, and

quality MRCMPSP. They found that in a multi-project environment, the mono-project approach

generates better schedules than the multi-project approach in the multi-objective optimization.

The mono-project approach RCMPSP also works well for the portfolio optimization in the set

Hodianto: Multi-Mode Resource Constrained Multi Project Scheduling Problem Optimization

82

of projects, such as the objective on this study to minimize total makespan (Kurtulus & Davis,

1982); (Özdamar & Ulusoy, 1995). When multiple projects are combined into a single mega

project, it becomes similar to the single RCPSP, hence the method used for RCPSP can be

used to solve the mono-project approach of MRCMPSP.

Previous research in the multi-project environment mainly focused on using heuristic methods.

Among them, heuristic relied on priority rules. One of the earliest studies about MRCMPSP

has been done by Pritsker, Waiters, and Wolfe (1969) to develop integer programming

formulation to solve multi-mode resource usage RCMPSP. Lova and Tormos (2001) studied

the effect of schedule generation schemes and priority rules for RCMPSP and found that the

parallel schedule generation scheme performed well compared to serial schedule generation

scheme on multi-project scheduling problem. This study uses parallel schedule generation

scheme (P-SGS) that does time incrementation to generate the schedule that will be further

discussed on Section 3.

Many metaheuristic methods have also been developed to solve the multi-project environment

efficiently. Example such as, Linyi and Yan (2007) that employed PSO with one-point

crossover approach to minimize the makespan of RCMPSP. Gonçalves, Mendes, and

Resende (2008) developed GA using random keys representation for RCMPSP. Random key

is one type of representations for decoding procedure to obtain feasible schedule which is

comprised of real random numbers between 0 and 1. This study applied random key (RK)

representation that will also be further discussed on Section 3. Chen and Shahandashti (2009)

applied a hybrid metaheuristic, GA and simulated annealing (SA) to solve RCMPSP with

multiple resource constraints, to three real project instances which have different types of

precedence relations. Sonmez and Uysal (2015) presented a backward-forward hybrid genetic

algorithm (BFHGA) for optimal scheduling on multi-project instances. And, Kannimuthu et al.

(2020) used a direct search algorithm called probabilistic global search Lausanne to solve

MRCMPSP with the multi-objective trade-offs among time, cost, and quality.

3. RESEARCH METHODOLOGY

In this study the proposed SOS will be used with RK representation, P-SGS, and forward-

backward scheduling to obtain the feasible schedule. A simple project example with single

project case and two execution modes from Zhang (2012) is used to easily described the

process. The single project case can be used because the multiple projects on this study are

also combined into a single mega project (mono-project approach), thus it becomes similar to

the single project.

3.1. Basic Symbiotic Organisms Search (SOS)

SOS developed by Cheng and Prayogo (2014), is a simple and powerful metaheuristic

optimization algorithm that can be used in various problem. SOS employs a population-based

search strategy to search for the optimal solution to a specific objective function, and it

simulates symbiotic interaction strategies that organisms use to live inside the ecosystems. A

main advantage of the SOS algorithm over other metaheuristic algorithms is that its operations

does not have any tuning parameters. Thus, it does not require tuning at all. SOS begins with

an initial population called the ecosystem. In the initial ecosystem, a group of organisms is

generated randomly within the search space. Each organism represents one candidate

solution to the corresponding problem. Each organism in the ecosystem is associated with a

Dimensi Utama Teknik Sipil, Vol.9 No.1: 77-96

83

certain fitness value, which reflects degree of adaptation to the desired objective. In every

iteration, a new generation consisted of new organisms is generated based on biological

interaction between two organisms in the ecosystem. Three symbiosis phases that resemble

the real-world biological interaction model are used in SOS. The three phases include:

mutualism, commensalism, and parasitism phase. Each organism interacts with other

organism randomly through all phases. The process is then repeated until the stopping criteria

is met.

3.2. SOS Proposed Framework for MRCMPSP

The preceding general SOS concept will serve as the basis for developing the framework of

MRCMPSP as can be seen on Figure 3.

Figure 3. SOS for MRCMPSP flowchart

To start with SOS or any other metaheuristic method, one has to select a suitable

representation for solutions. Metaheuristic approaches for RCPSP usually are operate on

representations of schedules than on schedules themselves (Kolisch & Hartmann, 1999). After

the population is generated, an appropriate decoding procedure must be selected to transform

the representation into a feasible schedule. Finally, similar to other population-based

metaheuristic methods, an evolutionary strategy of SOS which combines mutualism,

commensalism, and parasitism phase are needed to generate new individuals to produce

possible better solution.

Hodianto: Multi-Mode Resource Constrained Multi Project Scheduling Problem Optimization

84

The following sub-sections will describe the proposed framework in detail, using a case from

Zhang (2012) that can be seen on Figure 4 and Table 1. There are 6 activities, 2 modes, and

1 renewable resource with 4/day capacities. The mode predefined all the resources in to one

set of a mode, which means that in each mode, all activities will have the same type of

resource used on other mode, but with different resource requirement and duration. It is also

assumed that the relation between the duration and resource requirement may not be linear.

Figure 4. Project example; Source: (Zhang, 2012)

Table 1. Information about the example project case

Activity

Mode 1 Mode 2

Resource

requirement
Duration

Resource

requirement
Duration

1 2 3 1 4

2 3 4 2 6

3 4 2 2 3

4 4 2 3 3

5 3 1 1 3

6 2 4 1 6

3.2.1. Encoding Scheme (Organism Representation)

There are five representations that have been used and reviewed in the previous literature for

the encoding scheme (Kolisch & Hartmann, 1999), which are activity list (AL), RK, priority rule

(PR), shift vector (SV), and schedule scheme (SS). This study used RK Representations. In

the RK scheme, a series of array is provided according to the number of activities. The RK

value will represent the activity priority and the RK position showed the activity index. In Figure

5, the RK scheme example from project example is presented. The first column represented

the activity number 1 (dummy start) and the value inside represents the organism priority

position.

0.52 0.51 0.59 0.69 0.1 0.31 0.46 0.72

Figure 5. RK scheme from project example

Dimensi Utama Teknik Sipil, Vol.9 No.1: 77-96

85

In SOS, an organism of candidate solutions represents a potential solution, subject to the

objective function. As mentioned above, each organism consists of an array. Each organism

of the SOS consists of ∑ 𝑁21 number of array elements, which are real numbers between 0-1.

Where N is the total number of activities from all project, and the real numbers between 0-1

showed the organism priority position. The first N array elements will represent the organism

position for each activity, and the last N array elements will represent the organism position

for the mode used in each activity. In Figure 6, it can be seen that the RK has 16 array

elements for 8 activities. Whereas the first 8 array elements are each activity position from all

project (in this case it only has 1 project), and the last 8 array elements indicate the mode

used for each activity.

0.52 0.51 0.59 0.69 0.1 0.31 0.46 0.72 0.91 1.00 0.33 1.00 0.33 0.41 0.37 0.05

Figure 6. RK Representations used on this thesis

3.2.2. Initialize Population

After the encoding process is completed, SOS begins with an initial population called the

ecosystem. A group of organisms is then generated randomly within the search space. Each

organism represents one candidate solution and is associated with a certain fitness value

which is the project makespan. Control parameters include, the number of solutions, stopping

criteria, and the maximum number of iterations.

3.2.3. Decoding Scheme (Schedule Generation Scheme)

The schedule generation scheme (SGS) is the core of most heuristic procedure in RCPSP

problem (Kolisch, 1996). SGS is a technique that decode the encoding scheme representation

to build a feasible schedule from scratch into a valid complete schedule, subject to precedence

and resource constraints. There are only two types of SGS available which are serial schedule

generation scheme (S-SGS) and parallel schedule generation scheme (P-SGS). Both

schemes choose activities from the priority list and add them to a partial schedule until all

project activities are assigned into complete schedule. This study uses the P-SGS for the

decoding scheme to construct the feasible schedule.

P-SGS uses the time incrementation approach in their principal. It consists of c =1, …, n turn,

each has a schedule time tc. P-SGS iterates over the time horizon tc which start with tc=0 and

add activities that are eligible to be scheduled as the time increased. Associated with time tc

there are three separate activity sets which are the scheduled set (Sc), active set (Ac), and

feasible set (Fc). Sc consists of all the activities that have been scheduled until tc. Ac consists

of the activities that are active at tc. And Fc comprises of the activities that are eligible to be

scheduled. Sc, Ac, and Fc on the P-SGS are different from the set of all activities B. Table 2

shows the process of P-SGS for the example case.

Table 2. P-SGS example

c(turn) 1 2 2 3 4 4 5 6

tc 0 0 0 4 6 6 10 11

Fc [0] [1,2] [2,3] [3,4] [3,6] [5,6] [5] [7]

s 0 1 2 4 3 6 5 7

Position of each activity from all project Mode used position from each activity

Hodianto: Multi-Mode Resource Constrained Multi Project Scheduling Problem Optimization

86

3.2.4. Forward-Backward Scheduling

In the previous sub-section, the P-SGS is used as the decoding scheme to construct a feasible

schedule. The P-SGS sequentially schedules the activities based on the time incrementation,

at their earliest precedence and resource feasible start time (forward-scheduling), according

to the organism RK priority positions. The P-SGS could also be executed in the reverse time

direction (backward-scheduling). The forward and backward scheduling procedure was first

proposed by K. Y. Li and Willis (1992). Backward scheduling applies the P-SGS to the

reversed precedence network where the dummy finish become the new dummy start and vice-

versa. After that, all the activities are scheduled in a reverse direction from forward scheduling

until the schedule is complete.

Because the exact duration of the feasible schedule is not known in backward scheduling,

usually an arbitrary project completion time or the early finish time from forward scheduling is

selected to start the backward scheduling (Sonmez & Uysal, 2015). To simplify the procedure,

on Figure 9 the start time of backward scheduling (dummy finish) is set to be 0. After the

schedule is complete until the dummy start, the fitness value of project duration can be known

automatically similar to forward scheduling. The proposed algorithm employs P-SGS in order

to iteratively schedule both forward and backward scheduling in each iteration. Then, the

proposed algorithm will choose the minimum duration from between for each organism, and

store the result as the fitness value. Figure 7 illustrate the forward scheduling for the example

case, while the normal and proposed backward scheduling can be seen in Figure 8 and 9.

Figure 7. Forward scheduling from project example

Figure 8. Normal backward scheduling from project example

Dimensi Utama Teknik Sipil, Vol.9 No.1: 77-96

87

Figure 9. Backward scheduling example from project case (the method used on this study)

3.2.5. Evolution Strategy

In order to generate new solutions for the next iteration, almost all metaheuristic algorithms

apply a succession of operations to solutions after each iteration (Cheng & Prayogo, 2014).

GA has two operators which are crossover and mutation, while PSO updates the solution

through pbest and gbest. In SOS, the evolution comes from the 3 ecosystems phase which

are mutualism, commensalism, and parasitism that have been mentioned in the previous

section. In each ecosystem phase, the old organism can be replaced by a potential new

organism if the fitness value of the latter is better. In this study, the ecosystem searches for

better solution by updating the organism positions as the decision variables, which are the

random-key values in each of the three phases after every iteration. When the stopping criteria

or the number of maximum iterations were met, the algorithm will stop with the shortest project

makespan as the optimal solution.

3.3. Software for System Development

This study implements the proposed algorithm in Python language (version 3.8) on Spyder

software to solve the MRCMPSP. The machine is a personal computer with a speed of 2.9

GHz Intel Core i5-10400 CPU and 8 GB RAM.

4. CASE STUDY

The performance of SOS in solving MRCMPSP problem will be tested using several case

studies, which are standard benchmark instances of MRCPSP and RCMPSP, and real project

instances of MRCMPSP. The benchmark instances are used to evaluate the general

performance of SOS in theoretical cases, whereas the real project instances are used to

validated the performance of SOS in practical MRCMPSP problems.

4.1. Evaluation Testing with Benchmark Instances

First, to evaluate the performance of SOS and the proposed algorithm, comparisons are made

in well-known standard benchmark problems of project scheduling. Because there is no open

standard benchmark problem for the MRCMPSP problem, the benchmark problem from the

MRCPSP (multi-mode & single-project) and RCMPSP (single-mode & multi-project) case is

used to compare the results of SOS with the best known solution (BKS). The benchmark

problems for the MRCPSP are obtained from Project Scheduling Problem Library by (Kolisch

Hodianto: Multi-Mode Resource Constrained Multi Project Scheduling Problem Optimization

88

& Sprecher, 1997) (PSPLIB, http://www.om-db.wi.tum.de/psplib/getdata_mm.html) and (Van

Peteghem & Vanhoucke, 2014) (MMLIB,

https://www.projectmanagement.ugent.be/research/data). While the benchmark problems for

the RCMPSP are obtained from (Homberger, 2007) (MPSPLib,

http://www.mpsplib.com/index.php) and (Vázquez, Calvo, & Ordóñez, 2015) (RCMPSPLIB,

https://www.eii.uva.es/elena/RCMPSPLIB.htm). The population size is set to be 100, while the

maximum number of iterations is set to be 1000. The evaluation results are summarized on

Table 3 – Table 6.

The 20 tested instances chosen from PSPLIB are summarized on Table 3. The BKS are the

time makespan best known solution computed by various method from the past to the PSPLIB

library. The results from table 3 indicated that SOS is able to solve the MRCPSP PSPLIB

problem very well. From 20 tested instances, SOS was able to determine the optimal solution

in 19 instances, whereas on instance j3021_2 SOS was only able to obtain a near-optimal

solution from the BKS with 1 day difference (2.94% deviation). In average, the percent

deviation from BKS of the 20 tested instances is 0.15%.

Table 3. Results from PSPLIB instances

No
MRCPSP
PSPLIB

BKS SOS
Dev from
BKS (%)

1 j1026_1 14 14 0

2 j1026_3 16 16 0

3 j1019_1 13 13 0

4 j1019_2 15 15 0

5 j1020_3 21 21 0

6 j2064_1 21 21 0

7 j2064_2 23 23 0

8 j2064_3 23 23 0

9 j2064_4 19 19 0

10 j2064_5 26 26 0

11 j3021_1 38 38 0

12 j3021_2 34 35 2.94

13 j3021_3 36 36 0

14 j3021_4 37 37 0

15 j3021_5 37 37 0

16 j3010_1 26 26 0

17 j3010_2 28 28 0

18 j3010_3 24 24 0

19 j3010_4 36 36 0

20 j3010_5 33 33 0

The 20 tested instances chosen from MMLIB are summarized on Table 4. The BKS are the

time makespan best known solution computed by various method from the past to the MMLIB

library. Table 4 shows that the performance of SOS in large scale instances MRCPSP is not

that good compared to the smaller problem MRCPSP from PSPLIB library. Given that

MRCPSP with 2 or more non-renewable resources is NP-complete problem in the strong

sense (Kolisch & Drexl, 1997), consequently, the difficulty to solve the problem will increase

as the size of the problem increases. It can be seen from the results with 3 modes, from

MMLIB50 and MMLIB100 subset (number 1-10), that SOS is still able to find the optimal or

near optimal solution in 6 problems, out of 10 problems given. While on the larger instances

https://www.projectmanagement.ugent.be/research/data
http://www.mpsplib.com/index.php
https://www.eii.uva.es/elena/RCMPSPLIB.htm

Dimensi Utama Teknik Sipil, Vol.9 No.1: 77-96

89

from MMLIB+ (number 11-20), the deviation from BKS solution become bigger. The average

results deviation for the tested instances with 50 activities and 9 modes are 16.9%, and for

the tested instances with 100 activities and 6 modes are 21.15%. The average results

deviation from all tested instances from MMLIB is 10.4%.

Table 4. Results from MMLIB instances

No MRCPSP

MMLIB
BKS SOS

Dev from

BKS (%)

1 J503_1 19 19 0

2 J503_2 20 20 0

3 J503_3 18 19 5.56

4 J503_4 23 23 0

5 J503_5 18 19 5.56

6 J10051_1 32 32 0

7 J10051_2 34 34 0

8 J10051_3 32 33 3.13

9 J10051_4 39 39 0

10 J10051_5 29 30 3.45

11 Jall217_1 103 123 19.42

12 Jall217_2 86 102 18.60

13 Jall217_3 86 99 15.12

14 Jall217_4 83 96 15.66

15 Jall217_5 121 140 15.70

16 Jall500_1 100 125 25

17 Jall500_2 88 108 22.73

18 Jall500_3 78 94 20.51

19 Jall500_4 94 112 19.15

20 Jall500_5 98 116 18.37

The 10 tested instances chosen from MPSPLib are summarized on Table 5. The BKS are the

time makespan best known solution computed by various method from the past to the

MPSPLib library. Table 5 shows that the proposed SOS algorithm can get similar results with

the BKS in 4 out of 10 tested instances (mpj90a2agentcopp5, mpj90a5agentcopp1,

mpj90a20agentcopp2, mpj120a2agentcopp5). While in the other 6 tested instances the

average deviation from the BKS are just 2.24%, with the largest are mpj120a10agentcopp3

instance with 4.77% difference (22 days) from the BKS. The average results deviation from all

tested instances is 1.57%.

Table 5. Results from MPSPLib instances

No RCMPSP MPSPLIB BKS SOS
Dev from
BKS (%)

1 mpj90a2agentcopp2 330 336 1.82

2 mpj90a2agentcopp5 72 72 0

3 mpj90a5agentcopp1 568 568 0

4 mpj90a10agentcopp10 170 174 2.35

5 mpj90a20agentcopp2 127 127 0

6 mpj120a2agentcopp1 212 218 2.83

7 mpj120a2agentcopp5 95 95 0

Hodianto: Multi-Mode Resource Constrained Multi Project Scheduling Problem Optimization

90

No RCMPSP MPSPLIB BKS SOS
Dev from
BKS (%)

8 mpj120a5agentcopp8 527 533 1.14

9 mpj120a10agentcopp3 461 483 4.77

10 mpj120a20agentcopp6 863 887 2.78

The 14 tested instances chosen from RCMPSPLIB are summarized on Table 6. The BKS are

the time makespan best known solution available on the RCMPSPLIB library. The results from

Table 6 showed that the SOS algorithm able to outperforms the previous best known solutions

from Vázquez et al. (2015) in 10 of the 14 tested instances, and performs as good as the

previous best known solutions in 2 of the 14 tested instances . Whereas for the other 2

instances, the average deviation from the BKS are 3.34%, with the largest are found on the

instance mpj30a2, that have 3.54% difference from the BKS (4 days). The average results

deviation from BKS of all RCMPSPLIB tested instances is -1.88%.

Table 6. Results from RCMPSPLIB instances

No
RCMPSPLIB

(Vazquez et al., 2013)
BKS SOS

Dev from

BKS (%)

1 mpj30a2 113 117 3.54

2 mpj30a4 228 223 -2.19

3 mpj30a6 153 150 -1.96

4 mpj30a10 313 300 -4.15

5 mpj60a2 117 111 -5.13

6 mpj60a3 276 263 -4.71

7 mpj60a4 356 341 -4.21

8 mpj60a5 149 149 0

9 mpj90a2 90 89 -1.11

10 mpj90a3 390 374 -4.10

11 mpj90a4 698 683 -2.15

12 mpj90a5 114 114 0

13 mpj120a2 181 175 -3.31

14 mpj120a3 511 527 3.13

This evaluation results particularly show that the SOS is able to solve complex multi-project

scheduling problems relatively well from the 2 benchmark instances that have been used from

MPSPLib and RCMPSPLIB. Although, for the instances with a relatively large number of

activities (more than 1000 activities) such as the MPSPLib problem from MMLIB library, the

results of SOS are particularly not that good.

4.2. Validation Testing with MRCMPSP Real Case

MRCMPSP real project instances, retrieved from Kannimuthu et al. (2020) is used to validate

the performance of SOS. The result of SOS will be compared with two other popular

metaheuristics algorithms, GA and PSO. The original data also consists of cost and quality

value, along with related constraints. The objective function is to find the optimal trade-off

relationship among time, cost, and quality. However, this study ignored both the cost and

quality data and focus on the single objective to search the minimal total makespan of multiple

projects.

Dimensi Utama Teknik Sipil, Vol.9 No.1: 77-96

91

4.2.1. Project Information

The data contains of 3 building construction projects from India (Kannimuthu et al., 2020),

namely, projects X, Y, and Z. Project X has 32 activities, project Y has 28 activities, and project

Z has 18 activities. The estimated total combinations of the data are 14.9132 for project X,

18.6128 for project Y, and 18.6118 for project Z, where the base numbers (14.91 and 18.61)

are the average number of execution modes for each activity, and the exponent is the number

of activity The activities that are considered in the schedule are for the construction of the first

two floors of the above projects, which include: formwork, rebar/reinforcement, concreting,

block work, plastering, painting, and flooring. In addition, the data also consists of 22

renewable resources to be shared among all projects.

Because this study models the projects in a mono-project approach, the precedence network

of project X, Y, and Z need to be combined into single mega project with one dummy start and

finish. The activity number are also changed to be continuous for every project, based on the

last activity number of the previous project. The combined precedence network of project X,

Y, and Z can be seen in Figure 10. The activity number 1 is the dummy start and activity

number 80 is dummy finish.

Figure 10. Combined precedence network

4.2.2. Parameter Selection

As mentioned in Section 1, the optimization results of SOS in this case will be compared with

the results from GA and PSO. In SOS each iteration generated 4 function evaluations,

whereas in GA and PSO each iteration generated 1 function evaluation. To compare it equally,

the number of objective function evaluation for all the three algorithms must be the same. Thus,

the number of iterations in GA and PSO need to be multiplied by 4 to make it comparable. The

population size and the number of iterations of SOS are set to be 100 and 500 respectively.

The 500 iterations are involved with 2000 calls for the objective function. Therefore, the

population size and number of iterations of GA and PSO are set to be 100 and 2000

Hodianto: Multi-Mode Resource Constrained Multi Project Scheduling Problem Optimization

92

respectively. The larger the population size and number of iterations allows for more

computations and may lead to better objective function values. The parameters used for SOS,

GA, and PSO in this real case study projects are summarized in Table 7.

Table 7. Parameter selection

Metaheuristics Parameters Value

SOS

Pop size 100

Number of max. iterations 500

Number of objective functions called 2000

GA

Pop size 100

Number of max. iterations/ obj. functions called 2000

C_rate [0,6-1.0]

M_rate [0,01-0,25]

PSO

Pop size 100

Number of max. iterations/ obj. functions called 2000

inertia weight (w) w(1)= 0,9; w(T)=0,1

c1 2

c2 2

vmax 0.3

4.2.3. Results and comparison

Metaheuristics are stochastic search. The performance therefore should be evaluated by

statistical tests. For this case, 10 runs of experiments are carried out for every of the three

metaheuristics methods. The statistics of the performances are completed and summarized

on Table 8. The optimal solutions of minimum duration (Cmax), average project duration, and

standard deviation from the 10 runs of experiments are used for comparison between SOS,

GA, and PSO.

Table 8. Results SOS, GA, and PSO from 10 experiments

Metaheuristics
Minimal project

duration (Cmax)

Average

project

duration

Standard

Deviation (SD)

SOS 98 98.4 0.70

GA [0,6;0,01] 107 107.6 0.97

GA [0,8;0,15] 106 107.1 0.88

GA [1,0;0,25] 106 107.4 0.84

PSO 100 104.6 2.27

The results from Table 8 shows that SOS achieved better results in all minimal project duration,

average project duration, and standard deviation compared to GA and PSO. SOS is able to

obtain the minimal project duration of 98 days, followed by PSO 100 days, and GA 106 days.

For the average project duration, SOS achieved the best average results of 98.4 days from

10 run of experiments, followed by PSO 104.6 days, and GA 107.1 days with crossover

rate=0,8 and mutation rate=0,15. While for the standard deviation, SOS able to achieved the

lowest standard deviation of 0.70 compared to 0.84 for GA with crossover rate=1,0 and

mutation rate=0,25 and 2.27 for PSO.

The convergence from the best results of the 3 metaheuristics method are shown and

compared in Figure 11. The y axis in the figure is limited in range 95-180 days to make the

Dimensi Utama Teknik Sipil, Vol.9 No.1: 77-96

93

comparison easier to see. The figures show how the SOS, GA, and PSO achieved the results

through the number of objective function-called and converging to the optimal solution. The

figures show that GA and PSO converging faster to their optimal solution compared to SOS.

For example, take the 110 days as the criterion. It can be seen that GA only needs a couple

of objective function-called to achieve the results of 110 days, followed by PSO who needs

around 125 number of objective function-called, while SOS needs around 250 objective-

functions called to obtain the results. However, despite having the slowest convergence rate,

SOS is able to achieved the most optimal results of 98 days at the end of the iterations. Thus,

it also can be said that SOS can escape from the local optima solution compared to GA and

PSO, to achieved better global solution.

Figure 11. Graphs of convergence comparison

5. CONCLUSIONS

The primary purpose of this study is to minimized the total makespan (Cmax) from the

MRCMPSP, while must satisfy the precedence and resource constraints. To achieve this

purpose, this study proposed metaheuristic method SOS along with RK representations, P-

SGS, and forward backward scheduling in one framework, to find feasible schedule and the

minimal project duration of the project portfolio. The proposed SOS system along with RK

representations, P-SGS, and forward-backward scheduling are combined in one framework

to find the feasible schedule and the minimal project duration. To test the performance of the

proposed system, several case studies, which are standard benchmark instances of MRCPSP

Hodianto: Multi-Mode Resource Constrained Multi Project Scheduling Problem Optimization

94

and RCMPSP, and real project instance of MRCMPSP are used to evaluate and validate the

performance of SOS. Furthermore, in the real project instance the performance of SOS is

compared with other metaheuristics methods: GA and PSO.

The evaluation results from standard benchmark instances of MRCPSP and RCMPSP

(retrieved from: PSPLIB, MMLIB, MPSPLib, and RCMPSPLIB) show that SOS can achieve

the best-known solution in some of the tested instances and also outperforms/ achieve better

solution in 10 out of 14 RCMPSPLIB instances. However, when the problem is more complex

(i.e. many modes and many project activities) the algorithm may not always reach the best-

known solution results. Thus, in the future, further work is still needed to try combined and

improve different features of encoding and decoding scheme (i.e: AL representations, S-SGS,

etc) for the performance of SOS, to potentially achieved better results. The average deviation

from BKS in the 4 benchmark libraries is 0.15% in PSPLIB, 10.4% in MMLIB, 1.57% in

MPSPLib, and -1.88% in RCMPSPLIB.

The validation results from real project case of MRCMPSP from Kannimuthu et al. (2020)

show that SOS is able to achieved better solutions compared to GA and PSO in all minimal

project duration (Cmax), average project duration, and standard deviation in 10 runs of

experiment. SOS found a minimal project duration of 98 days compared to 100 days for PSO,

and 106 days for GA. For the average project duration, SOS average 98.4 days from the 10

experiments, compared to 104.6 days and 107.1 days for PSO and GA respectively. While for

the standard deviation, SOS achieved the lowest SD with 0.70 compared to 0.84 and 2.27 for

GA and PSO respectively. It was also shown from the graphic of convergence that SOS takes

more objective function calls to achieve the optimal solutions compared to GA and PSO.

However, SOS able to achieve better minimal project duration (Cmax) and average project

duration, which indicates that SOS will not premature/ be trap in the local optima solution and

can escape to achieve better global solutions. Furthermore, SOS also able to achieved the

lowest standard deviation compared to GA and PSO, which indicate that it can produce the

most consistent results with low variance.

For the future research, several suggestions were proposed in response to this study results.

The first one, future research could integrate different features of encoding and decoding

schemes with the proposed framework (i.e: AL Representations and SSGS), to seek better

performance. Future study can also consider other classifications such as allowed activity

preemption, non-deterministic information, or other objective functions, such as cost-based

objective (i.e: maximize Net Present Value), resource-based objective (i.e. minimize resource

utilization), as well as the tradeoff between time and cost.

6. REFERENCES

Alcaraz, J., & Maroto, C. (2001). A Robust Genetic Algorithm for Resource Allocation in Project
Scheduling. Annals of Operations Research, 102(1), 83-109.
doi:10.1023/A:1010949931021

Bettemir Önder, H., & Sonmez, R. (2015). Hybrid Genetic Algorithm with Simulated Annealing
for Resource-Constrained Project Scheduling. Journal of Management in Engineering,
31(5), 04014082. doi:10.1061/(ASCE)ME.1943-5479.0000323

Blazewicz, J., Lenstra, J. K., & Kan, A. H. G. R. (1983). Scheduling Subject to Resource
Constraints: Classification and Complexity. Discrete Applied Mathematics, 5(1), 11-24.
doi:https://doi.org/10.1016/0166-218X(83)90012-4

https://doi.org/10.1016/0166-218X(83)90012-4

Dimensi Utama Teknik Sipil, Vol.9 No.1: 77-96

95

Browning, T. R., & Yassine, A. A. (2010). Resource-Constrained Multi-Project Scheduling:
Priority Rule Performance Revisited. International Journal of Production Economics,
126(2), 212-228. doi:https://doi.org/10.1016/j.ijpe.2010.03.009

Chen, P.-H., & Shahandashti, S. (2009). Hybrid of Genetic Algorithm and Simulated Annealing
for Multiple Project Scheduling with Multiple Resource Constraints. Automation in
Construction, 18, 434-443. doi:10.1016/j.autcon.2008.10.007

Cheng, M.-Y., & Prayogo, D. (2014). Symbiotic Organisms Search: A New Metaheuristic
Optimization Algorithm. Computers & Structures, 139, 98-112.
doi:https://doi.org/10.1016/j.compstruc.2014.03.007

Gonçalves, J. F., Mendes, J. J. M., & Resende, M. G. C. (2008). A Genetic Algorithm for the
Resource Constrained Multi-Project Scheduling Problem. European Journal of
Operational Research, 189(3), 1171-1190.
doi:https://doi.org/10.1016/j.ejor.2006.06.074

Habibi, F., Barzinpour, F., & Sadjadi, S. (2018). Resource-Constrained Project Scheduling
Problem: Review of Past and Recent Developments. Journal of Project Management,
3, 55-88. doi:10.5267/j.jpm.2018.1.005

Hartmann, S., & Briskorn, D. (2010). A Survey of Variants and Extensions of The Resource-
Constrained Project Scheduling Problem. European Journal of Operational Research,
207(1), 1-14. doi:https://doi.org/10.1016/j.ejor.2009.11.005

Herroelen, W., & Leus, R. (2005). Identification and Illumination of Popular Misconceptions
about Project Scheduling and Time Buffering in A Resource-Constrained Environment.
Journal of the Operational Research Society, 56(1), 102-109.
doi:10.1057/palgrave.jors.2601813

Homberger, J. (2007). A Multi-Agent System for the Decentralized Resource-Constrained
Multi-Project Scheduling Problem. International Transactions in Operational Research,
14(6), 565-589. doi:https://doi.org/10.1111/j.1475-3995.2007.00614.x

Kannimuthu, M., Raphael, B., Ekambaram, P., & Kuppuswamy, A. (2020). Comparing
Optimization Modeling Approaches for the Multi-Mode Resource-Constrained Multi-
Project Scheduling Problem. Engineering, Construction and Architectural
Management, 27(4), 893-916. doi:10.1108/ECAM-03-2019-0156

Kolisch, R. (1996). Serial and Parallel Resource-Constrained Project Scheduling Methods
Revisited: Theory and Computation. European Journal of Operational Research, 90(2),
320-333. doi:https://doi.org/10.1016/0377-2217(95)00357-6

Kolisch, R., & Drexl, A. (1997). Local Search for Nonpreemptive Multi-Mode Resource-
Constrained Project Scheduling. Lie Transactions, 29(11), 987-999.
doi:10.1023/A:1018552303415

Kolisch, R., & Hartmann, S. (1999). Heuristic Algorithms for the Resource-Constrained Project
Scheduling Problem: Classification and Computational Analysis. In J. Węglarz (Ed.),
Project Scheduling: Recent Models, Algorithms and Applications (pp. 147-178).
Boston, MA: Springer US.

Kolisch, R., & Sprecher, A. (1997). Psplib - a Project Scheduling Problem Library: Or Software
- ORSEP Operations Research Software Exchange Program. European Journal of
Operational Research, 96(1), 205-216. doi:https://doi.org/10.1016/S0377-
2217(96)00170-1

Kurtulus, I., & Davis, E. W. (1982). Multi-Project Scheduling: Categorization of Heuristic Rules
Performance. Management Science, 28(2), 161-172. Retrieved from
https://EconPapers.repec.org/RePEc:inm:ormnsc:v:28:y:1982:i:2:p:161-172

Li, F., Xu, Z., & Li, H. (2021). A Multi-Agent Based Cooperative Approach to Decentralized
Multi-Project Scheduling and Resource Allocation. Computers & Industrial Engineering,
151, 106961. doi:https://doi.org/10.1016/j.cie.2020.106961

Li, K. Y., & Willis, R. J. (1992). An Iterative Scheduling Technique for Resource-Constrained
Project Scheduling. European Journal of Operational Research, 56(3), 370-379.
doi:https://doi.org/10.1016/0377-2217(92)90320-9

https://doi.org/10.1016/j.ijpe.2010.03.009
https://doi.org/10.1016/j.compstruc.2014.03.007
https://doi.org/10.1016/j.ejor.2006.06.074
https://doi.org/10.1016/j.ejor.2009.11.005
https://doi.org/10.1111/j.1475-3995.2007.00614.x
https://doi.org/10.1016/0377-2217(95)00357-6
https://doi.org/10.1016/S0377-2217(96)00170-1
https://doi.org/10.1016/S0377-2217(96)00170-1
https://econpapers.repec.org/RePEc:inm:ormnsc:v:28:y:1982:i:2:p:161-172
https://doi.org/10.1016/j.cie.2020.106961
https://doi.org/10.1016/0377-2217(92)90320-9

Hodianto: Multi-Mode Resource Constrained Multi Project Scheduling Problem Optimization

96

Linyi, D., & Yan, L. (2007, 15-19 Dec. 2007). A Particle Swarm Optimization for Resource-
Constrained Multi-Project Scheduling Problem. Paper presented at the 2007
International Conference on Computational Intelligence and Security (CIS 2007).

Lova, A., & Tormos, P. (2001). Analysis of Scheduling Schemes and Heuristic Rules
Performance in Resource-Constrained Multiproject Scheduling. Annals of Operations
Research, 102(1), 263-286. doi:10.1023/A:1010966401888

Maroto, C., Tormos, P., & Lova, A. (1999). The Evolution of Software Quality in Project
Scheduling. In J. Węglarz (Ed.), Project Scheduling: Recent Models, Algorithms and
Applications (pp. 239-259). Boston, MA: Springer US.

MMLIB. Retrieved from https://www.projectmanagement.ugent.be/research/data
MPSPLib. Retrieved from http://www.mpsplib.com/index.php
Özdamar, L., & Ulusoy, G. (1995). A Survey on the Resource-Constrained Project Scheduling

Problem. Lie Transactions, 27, 574-586. doi:10.1080/07408179508936773
Payne, J. H. (1995). Management of Multiple Simultaneous Projects: a State-of-the-Art

Review. International Journal of Project Management, 13(3), 163-168.
doi:https://doi.org/10.1016/0263-7863(94)00019-9

Pritsker, A. A. B., Waiters, L. J., & Wolfe, P. M. (1969). Multiproject Scheduling with Limited
Resources: A Zero-One Programming Approach. Management Science, 16(1), 93-108.
doi:10.1287/mnsc.16.1.93

PSPLIB. Retrieved from http://www.om-db.wi.tum.de/psplib/getdata_mm.html
RCMPSPLIB. Retrieved from https://www.eii.uva.es/elena/RCMPSPLIB.htm
Sonmez, R., & Gürel, M. (2016). Hybrid Optimization Method for Large-Scale Multimode

Resource-Constrained Project Scheduling Problem. Journal of Management in
Engineering, 32(6), 04016020. doi:10.1061/(ASCE)ME.1943-5479.0000468

Sonmez, R., & Uysal, F. (2015). Backward-Forward Hybrid Genetic Algorithm for Resource-
Constrained Multiproject Scheduling Problem. Journal of Computing in Civil
Engineering, 29(5), 04014072. doi:10.1061/(ASCE)CP.1943-5487.0000382

Van Peteghem, V., & Vanhoucke, M. (2014). An Experimental Investigation of Metaheuristics
for the Multi-Mode Resource-Constrained Project Scheduling Problem on New Dataset
Instances. European Journal of Operational Research, 235(1), 62-72.
doi:https://doi.org/10.1016/j.ejor.2013.10.012

Vázquez, E. P., Calvo, M. P., & Ordóñez, P. M. (2015). Learning Process on Priority Rules to
Solve the Rcmpsp. Journal of Intelligent Manufacturing, 26(1), 123-138.
doi:10.1007/s10845-013-0767-5

Villafáñez, F., López-Paredes, A., & Pajares, J. (2014). From the Rcpsp to the Drcmpsp :
Methodological Foundations.

Villafáñez, F., Poza, D., López-Paredes, A., Pajares, J., & Olmo, R. d. (2019). A Generic
Heuristic for Multi-Project Scheduling Problems with Global and Local Resource
Constraints (Rcmpsp). Soft Computing, 23(10), 3465-3479. doi:10.1007/s00500-017-
3003-y

Wauters, T., Kinable, J., Smet, P., Vancroonenburg, W., Vanden Berghe, G., & Verstichel, J.
(2014). The Multi-Mode Resource-Constrained Multi-Project Scheduling Problem.
Journal of Scheduling, 19, 1-13. doi:10.1007/s10951-014-0402-0

Yang, B., Geunes, J., & O'Brien, W. (2001). Resource-Constrained Project Scheduling: Past
Work and New Directions1.

Zhang, H. (2012). Ant Colony Optimization for Multimode Resource-Constrained Project
Scheduling. Journal of Management in Engineering, 28(2), 150-159.
doi:10.1061/(ASCE)ME.1943-5479.0000089

https://www.projectmanagement.ugent.be/research/data
http://www.mpsplib.com/index.php
https://doi.org/10.1016/0263-7863(94)00019-9
http://www.om-db.wi.tum.de/psplib/getdata_mm.html
https://www.eii.uva.es/elena/RCMPSPLIB.htm
https://doi.org/10.1016/j.ejor.2013.10.012

