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ABSTRACT: In construction site usually fabricated the reinforced steel bars into the form of 
one-dimensional stocks and designed according to the structural specification. The purpose 
of cutting stock problems for rebar cutting plan (RCP) is to satisfy the project requirements 
and minimize the cutting losses. This study proposed the metaheuristic method symbiotic 
organisms search (SOS) to solve bi-objective rebar cutting plan (B-RCP) in one framework, to 
find the feasible cutting patterns along with the minimum total waste of the reinforced steel 
bar. To test the performance of the proposed SOS framework, the previous study case is set 
to be a benchmark. For real project instances of RCP are used to evaluate and validate the 
performance of SOS. The validation results from both cases of RCP show that SOS has better 
performance than those in previous studies. Thus, it is validated that SOS is a competitive 
algorithm for solving the RCP. 
 
Keywords: rebar cutting plan, cutting patterns, waste, symbiotic organisms search.   
 
 
1. INTRODUCTION 
 

Construction industry is one of the biggest industries in the world, with a contribution towards 

the socio-economic growth and providing the infrastructure, such as bridge, warehouse, other 

basic building, and facilities. Due to this fact, it has also affected the consumption of 

construction material. Construction material such as concrete and reinforcing steel bars are 

commonly used in the construction project, such as foundation, columns, slabs, and beams. 

All of them represent a significant portion of total project budget.  

 

Construction materials can be projected up to 60 percent of the construction costs, and 

reinforcing steel bar has a significant portion of the total project budget, approximately 20 

percent of the entire project cost (Wang & Wang, 2010). Reinforced steel bars with ridges and 

grooves have a better mechanical anchoring and strength in reinforced concrete. They are 

used in applications such as reinforced concrete slabs, columns, prefabricated beams, and 

foundation. Improper management of reinforced steel bars can be directly affect the project 

(Salem, Shahin, & Khalifa, 2007). As there are various patterns of reinforced steel bars cutting 

to fulfill the demand requirement on site construction, many researchers have tried to solve 

the cutting stock problem of steel bars in different ways. The popular goal is to minimize the 

trim losses which occurs frequently in the construction sites. Thus, making a feasible cutting 

plan on site for steel bars is important for higher cost efficiency in construction management. 

https://doi.org/10.9744/duts.9.1.1-17
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However, the availability of raw material lengths in the general market are commonly limited 

to 20 ft (6 m), 30 ft (9 m), 40 ft (12 m) thus waste of reinforcing rebar and surplus waste is 

unavoidable (Porwal & Hewage, 2012). Therefore, the raw steel bars must be cut to fit the 

design. To avoid these unnecessary costs, it is better to generate a cutting rebar plan in pursuit 

of cost-effectiveness by minimizing the waste of materials, site-place, and rebar procurement 

(Nikakhtar, Abbasian-Hosseini, Wong, & Zavichi, 2015). Moreover, in construction projects, 

minimizing material waste may not lead to complete cost saving because higher complexity of 

a rebar cutting plan would more likely confuse the workers and lower their productivity. 

Therefore to minimize the material waste should be implemented together with a simple of 

cutting rebar plan in order to achieve labor cost-efficient (Zheng, 2018). 

 

The simplicity may come from a small number of cutting patterns which are a combination of 

various demand steel bar lengths. Overall, the following issues have been identified as 

significant concerns which need to be addressed in the cutting rebar plan: (1) how to provide 

the optimal cutting rebar plan to seek the minimum raw material, and (2) how to makes cutting 

plan as simple as possible to seek higher productivity of workers on-site. 

 

In this paper, a case study is performed based on a 4-story building project in Indonesia. This 

case study was to give an insight of a practical steel bar cutting problem to minimize the waste 

with a practical constructability on site fabrication of reinforced steel bars. Therefore, a 

mathematical algorithm and constraints based on site construction project are used to assist 

the decision-making. The proposed SOS algorithm is implemented to helps the decision 

makers investigate the trade-off between benefits such as minimizing the raw material as well 

as the waste, and the number of cutting patterns in order to improve the workers productivity 

(Bai, Labi, & Sinha, 2012).  

 
 

2. LITERATURE REVIEW 
 

2.1 Rebar Management in Construction Industry 

 

Reinforced steel bars are one of the most expensive materials in the construction industry. 

Reinforced steel bars are long narrow steel with a circular shape and it provides the tensile 

strength for the structure inside the concrete. It is important to manage the usage of rebars for 

construction because it makes up a significant cost of construction. Therefore, minimizing the 

raw material of reinforced steel bars not only improves the profitability of the construction 

projects and also has significant environmental benefits, because construction is a key pillar 

of the industrial sector in any country (Adjei, 2016). Rebars are generally used in several 

diameter sizes in the industry: 8, 10, 12, 16, 20, 25, and 32 in millimeters. Steelwork 

companies usually supply the reinforced steel bars in 12 m as standard sizes because it is the 

optimal length that average trucks can carry (Altınpulluk, 2019).  

 

Reducing the trim losses of reinforced bars has attracted attention in the literature since it is 

one of the major cost items in the construction industry. A recent study published by Zheng et 

al (2018) considered the rebar material costs related to trim loss and rebar installation costs, 

including labor hours used in rebar stock processing, delivering, placing, and tying. These 

installation costs directly depend on the rebar layout plan. The authors claimed that benefits 

can be got from a trade-off between reducing waste and lowering the total cost by identifying 
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the rebar layout arrangement plan and generating the rebar procurement plan, cutting plan, 

and crew installation plan. Another recent study by Benjaoran, Sooksil, and Metham (2019) 

studied the effect of demand variations on steel bars cutting loss and experimentally showed 

how the distribution of pieces of length ordered affects material utilization. 

 

2.2 An Overview One-Dimensional Cutting Stock Problem 

 

The first analytical method and most significant advance in solving cutting problems was the 

seminal work of Gilmore and Gomory (1961), in which they described their pattern generation 

technique for solving the one dimensional trim loss minimization problem using linear 

programming. Thus, the cutting stock problem can be modelled as: 

 

 
Minimize ∶ ∑ 𝑋i   

𝑛

𝑖=1 

 
 (1) 

 

    

subject to: 

 
∑ 𝑃𝑗𝑖 𝑋𝑖 ≥ 𝐷𝑗, 𝑗 = 1,2, . . , 𝑆 

𝑛

𝑖=1 

 
 (2) 

    

 

 
∑  𝑃𝑗𝑖 𝑙𝑗  ≤ 𝐿 

𝑆

𝑗=1 

 
 (3) 

    

𝑃𝑗𝑖 ≥ 0 and integer 

𝑋𝑖 ≥ 0 and integer,     𝑖 = 1,2, … , 𝑍 

where: 

L  = the length of raw material rebar; 

lj   = the length of each demand rebar cut, j = 1,2,…,S; 

Dj  = the demand of rebar j, j = 1,2,..,S ; 

Pji  = (P1i,…, P2i,….) will be the cutting pattern, j = 1,2,…,S, where Pji is the number of items j 

in the cutting pattern ;  

Xi  = The number of pattern i should be cut 

And the objective is to minimize the trim loss can be formulated as : 

 
∑  𝐿𝑗𝑖 𝑋𝑗 − 

𝑛

𝑗=1 

∑  𝑙𝑗 𝑋𝑗   

𝑛

𝑗=1 

 
 (4) 

Many researchers have improved this method, and this method has been used widely, mainly 

to solve the cutting stock problem. Zheng (2018) developed an integer programming technique 

that can be applied to get the optimal rebar stock procurement plan and cutting plan in terms 

of minimal trim losses. Recently, along with the development of technology, many 

metaheuristic methods have been developed to solve the one-dimensional cutting stock 

problem with various models, Salem et al. (2007) presented a genetic algorithm to reduce the 

trim losses. C. Cheng and Bao (2018) proposed an improved artificial fish swarm algorithm to 

solve the cutting stock problem.  
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2.3 Simplicity in Rebar Cutting Plan (RCP) 

 

In construction industry, construction projects seem to be complex as a result of the 

uncertainty created by different workers and factors. Identifying the nature of complexity, 

reducing unnecessary complexity, and increasing the simplicity in construction projects might 

lead to better management of the construction process (Pannanen & Koskela, 2005). 

Simplicity in the construction itself means that something is easy to understand, easy to work 

on it and to improve the constructability. 

 

Thus, a previous study revealed a new application for simplifying the cutting rebar process in 

the industry, to limit the number of cutting patterns. Thus, reducing the number of different 

patterns will result in faster time more stable results of the production process for cutting rebar 

orders (Kolen & Spieksma, 2000). For instance, in a steelwork company or the construction 

project, during the process of rebar cutting the positions of the cutting knives in the machine 

will have to be adjusted for each new cutting pattern. Thus, it is advantageous to organize the 

cutting plan with a limited number of patterns (Yanasse, Limeira, & Research, 2006). Also, the 

previous study mentioned that in some situations, the cost of production may vary depending 

on pattern changes in terms of the time and workers needed to prepare equipment (Cerqueira 

& Yanasse, 2009). 

 

2.4 Metaheuristic Methods to Solve the RCP 

 

The purpose of the one-dimensional cutting stock problem is to minimize the trim losses as 

well as the raw material. The first step to solve this cutting stock problem is to generate all the 

cutting patterns. After generating the cutting patterns, then find the combination of cutting 

patterns to create the rebar cutting plan. The new approach of optimization called 

metaheuristics as proposed by Glover and Laguna (1998a), is local search heuristic has the 

ability that can allow escaping local optima. In recent years, the number of metaheuristic 

algorithms is growing significantly because researchers are quite interested to create a more 

powerful metaheuristic to solve the optimization problem. These metaheuristic algorithms that 

have been applied to solve cutting stock problem (CSP) are ant colony optimization (ACO), 

tabu search (TS), and genetic algorithm (GA). 

 

The ACO is the probability algorithm used for searching optimization paths,  proposed by 

Marco Dorigo in his doctoral dissertation in 1992 (Dorigo, Birattari, & Stutzle, 2006). This 

algorithm is adapted from ants’ social or behavior to search a portion of food or paths and it is 

called pheromone. From the early nineties, when the first ant colony optimization algorithm 

was proposed, ACO attracted the attention of researchers and it has many successful 

applications that are now available. Thus, there are many improvements for the ACO 

algorithm, including the improvements of the algorithm in self-adaptive, increasing the diversity 

of the various group, improvements for each local search, and combining with the global 

optimization algorithm (Pei, Wang, & Zhang, 2012).  In the previous study, a revised version 

of ant colony algorithm to solve the one-dimensional cutting stock problem is presented by 

Eshghi, Javanshir, and Practice (2008). 

 

Tabu search is a metaheuristic search method employing local search methods used for 

mathematical optimization proposed by Glover in 1990 (Glover & Laguna, 1998b). One of the 

important parts of tabu search is its use of adaptive memory, which creates a more flexible 
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search behavior. In the previous research, an improved tabu search with mixed objective 

function for one-dimensional cutting stock problems is presented by Yang, Sung, and Weng 

(2006), because the simple tabu search is weak in solving the problem efficiently and 

effectively. 

 

The GA is a metaheuristic inspired by the process of natural selection such as reproduction, 

crossover, and mutation in searching the space of problem as chromosomes, and developed 

by John Holland and his colleague in 1970 (Holland, 1984). The GA have been successfully 

applied in numerous fields to solve the CSP, such as the GA applied to solve the CSP of 

reinforced steel bars with minimum waste (Salem et al., 2007), and an application of GA to 

optimize the multiple length cutting stock problem (Chen et al., 2019).  

 

3. METHODOLOGY 
 

This study implements the SOS algorithm with an ε-constraint method and use MATLAB 

2019b to solve the bi-objective rebar cutting plan (B-RCP). The optimal solution of the cutting 

pattern will manually export to Microsoft Excel. In Microsoft Excel, the optimal solution will be 

presented Pareto front and the result will be compared with the PSO algorithm to verify the 

result of the proposed algorithm. Figure 1 shows the flowchart of the bi-objective optimization 

procedure using the ε-constraint method. 

 

 
Figure 1. Flowchart of the bi-objective optimization 
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3.1 Symbiotic Organisms Search 

 

Symbiotic organisms search (SOS) is a metaheuristic optimization algorithm to solve the 

numerical and engineering problem, proposed by M.-Y. Cheng and Prayogo (2014). SOS 

simulates the symbiotic interaction strategies between each organism to live in the 

ecosystems and employs a population-based search strategy to search for the optimal solution 

to a given objective function. The major advantage of SOS is that it has no algorithmic 

parameter, thus saving the effort of parameter tuning.  

 

The first step of SOS is to create an initial population called the ecosystem. In this ecosystem, 

SOS creates a random group of organisms for the search space. Each organisms represents 

each candidate's solution to the problem. Each organism in the ecosystem is associated with 

a certain fitness value, which reflects the degree of adaptation to the desired objective. Figure 

2 shows the flowchart of SOS for solving the bi-objective optimization rebar cutting plan. 

 

 
Figure 2. SOS for bi-objective rebar cutting plan flowchart 
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After the material waste and the number of the cutting pattern are calculated, the next step is 

to seek non-dominated solutions between these objectives, minimizing the waste by 

considering the number of cutting patterns. For the bi-objective optimization problem, a Pareto 

optimal solution is applied to simultaneously optimize the objective (Bakasoglu, Owen, & 

Gindy, 1999). Then, the Pareto optimal solutions are chosen by comparing all the result 

alternatives between minimum waste and the number of cutting patterns. Because the main 

objective function is to minimize the waste of reinforced bars along with the minimum number 

of cutting patterns, the ratings of non-dominated solutions will be sorted in an ascending order: 

smaller goes first.  

 

For an illustration of the Pareto front, the data sets have been given in Table 1. After 

completing the ranking assessment, the Pareto front will be made based on the above 

assessment of the non-dominated solution in order to investigate the trade-off between the 

material waste and the number of cutting patterns. Figure 3 is shown to illustrate the Pareto 

front for Table 1.  

 

 

Table 1. Data illustration for Pareto front 

 
 

 

1 11.94% 17 3 1 18 8

2 12.88% 18 3 1 19 13

3 11.24% 16 3 1 17 4

4 9.56% 13 4 4 17 4

5 9.67% 14 4 4 18 8

6 10.34% 15 4 4 19 13

7 9.32% 11 5 7 18 8

8 8.45% 9 5 7 16 2

9 8.24% 8 5 7 15 1

10 9.42% 12 6 10 22 18

11 8.67% 10 6 10 20 16

12 7.23% 7 6 10 17 4

13 6.34% 3 7 13 16 2

14 7.05% 6 7 13 19 13

15 6.94% 5 7 13 18 8

16 5.21% 2 8 16 18 8

17 4.68% 1 8 16 17 4

18 6.89% 4 8 16 20 16

Summarize for Illustration

Number of 

cutting pattern
Total WasteNumber

Rank Based on 

Tw(1)

Rank Based on 

Ncp (2)

Total Rank (1) + 

(2)
Rank
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Figure 3. Pareto front between total waste and number of cutting patterns 

In Figure 3, the red point shows rank number #1, with the number of cutting patterns, Ncp, of 

5 and the total waste, Tw, of 8,24%. Some practical engineers suggest if the construction scope 

is small such as a warehouse, and residential house construction, they choose simplicity 

rather than waste. However, if the construction scope is quite large such as bridges, and tall 

buildings, they choose minimum waste rather than simplicity. Still, the decision-maker can 

make their choice based on their preference. 

 

4. CASE STUDY 
  

4.1 Evaluation with Previous Benchmarks 

 

The benchmarks data is retrieved from the previous study by Melhem, Maher, and 

Sundermeier (2021). This set of data is a part of the demanded reinforce steel bars for the 

power plant project, namely SD3-Ø20. The original paper considers the minimum waste of 

rebars along with two different pairs of lengths and the 12-m standard lengths. However, this 

study will ignore the multiple lengths and focus on the single standard lengths, then search for 

the minimum waste along with minimizing the total utilization of reinforced steel bars and 

lowering the number of cutting patterns in a construction project. The detail of the data can be 

seen in Table 2.  
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Table 2. Demand rebar of SD3-Ø20; Source: (Melhem et al., 2021) 

 
 

4.2 Cutting Plan Results (Benchmarks) 

 

Before optimization, all of the possible cutting patterns were obtained from pattern generator 

by Pierce method is 102 cutting patterns. Then, the SOS and PSO algorithms are programmed 

in MATLAB to perform bi-objective optimization. Afterwards, the best result of cutting patterns 

will be manually exported to excel.  The details of cutting patterns from SOS and PSO for Ncp 

= 5 will be shown in Tables 3 and 4.  

 

Taking Tables 3 and 4 as an example, in the first column (No. Plan) refer as Ncp, and the 

second column shows how many times that the pattern type is used. The Cutting Length 

means the total length of each pattern type without trim losses, and the next column is the 

total of raw material of each pattern type. The middle columns show the ordered rebar with 

the cutting plan. For example, the calculation of cutting length in first row is quantity of pattern 

* ordered bars * the length of each ordered bar: 42 * 4 *0.8 + 42 * 1 * 8.15 = 476.7 meters, 

and for the calculation of total raw bars is quantity of pattern * standard length of raw: 42 * 12 

= 504 meters. Afterward, the 53641.7 meters and 57624 meters is the summation of cutting 

length and the total raw material respectively. 

 

At the bottom table, sum Xi is the total cutting pattern that we used. For the trim loss is the 

total waste in meters. Therefore, to get the total waste in meters the calculation is total raw 

bars – cutting length + surplus cut: 57624 - 53641.7 + 750.4 = 4732.7 meters. Thus, to 

calculate the final output of waste percentage is trim losses divided by total raw bars  

(4732.7 / 57624) * 100% = 8.21% 

 

The results in Table 5 show that SOS and PSO achieved better results than the original paper 

in all aspects, including total raw material as well as the total waste. However, only SOS is 

able to obtain the lowest material waste with the lowest number of cutting patterns in this case, 

followed by PSO which is obtain 9,53% of material waste with 5 of number cutting patterns. 

Both algorithms can obtain the minimum raw material with a total length of 57624 meters along 

with the total waste of 8,21%.  
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Table 3. Cutting pattern results from the SOS (Ncp = 5) 

 
 

Table 4. Cutting pattern results from the PSO (Ncp = 5) 

 
 

 

Table 5. Comparison of the results with previous study by Melhem et al. (2021) 

Metaheuristics 

Number of 

Cutting 

Patterns 

Total Length of Raw 

Material (m) 
Total Waste (%) 

SOS 

5 57624 8,21 

6 57624 8,21 

7 56724 8,21 

PSO 

5 58464 9,53 

6 57624 8,21 

7 57624 8,21 

Melhem et al. 

(2021)  
8 57636 8,23 

 

 

V1 (m) V2 (m) V3 (m) V4 (m) V5 (m) V6 (m) V7 (m) V8 (m)

0.8 3 4 7.5 7.85 8.15 8.5 11

42 4 1 476.7 504

700 3 1 7175 8400

1330 1 1 15295 15960

1330 1 1 15295 15960

1400 1 15400 16800

Demand 1330 1330 1330 1330 700 42 1330 1400 53641.7 57624

Cut 2268 1330 1330 1330 700 42 1330 1400

Surplus 938 0 0 0 0 0 0 0

Surplus 

Total 750.4 0 0 0 0 0 0 0

4802

4732.7

8.21%

750.4

Sum (Sum Xi)

Total  Waste (%) (Trim Loss/ TRB)*100

Length of Raw 

Bar (m)
12

Trim Loss (TRB - CL + SC)

Total Surplus (m) (Sum Surplus Cut)

Number of Bars (Bij)of Length Vj To be cut from the standard length

5

No.  

Plan

Quantity 

of Pattern

Xi * Vi * Bij (Cutting 

Length)

Xi * L (Total 

Raw Bars 

Length)

V1 (m) V2 (m) V3 (m) V4 (m) V5 (m) V6 (m) V7 (m) V8 (m)

0.8 3 4 7.5 7.85 8.15 8.5 11

700 4 0 0 0 1 0 0 0 7735 8400

42 4 0 0 0 0 1 0 0 476.7 504

1400 0 1 0 0 0 0 1 0 16100 16800

1330 0 0 1 1 0 0 0 0 15295 15960

1400 0 0 0 0 0 0 0 1 15400 16800

Demand 1330 1330 1330 1330 700 42 1330 1400 55006.7 58464

Cut 2968 1400 1330 1330 700 42 1400 1400

Surplus 1638 70 0 0 0 0 70 0

Surplus 

Total 

bar(m) 1310.4 210 0 0 0 0 595 0

4872

5572.7

9.53%

Pattern -Number of Bars (Bij)of Length Vj To be cut from the standard length

Length of Raw 

Bar (m)
12

5

Total Surplus (m) (Sum Surplus Cut) 2115.4

Sum (Sum Xi)

Trim Loss (TRB - CL + SC)

No.  

Plan

Quantity of 

Pattern

Xi * Vi * Bij 

(Cutting Length)

Xi * L (Total 

Raw Bars 

Length)

Total  Waste (%) (Trim Loss/ TRB)*100
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4.3 Further Analysis 

 

In a further analysis, the contractor lists the demand bars D-16 for 4 story building, which will 

be cut simultaneously for this project. This data set contains 8 types of lengths to satisfy the 

requirement in the project. The data that has been listed by the contractor can be seen in 

Table 6. 

 

Table 6. Data Rebars D-16 for pile caps, sloofs, and columns 

 
 

4.4 Cutting Plan Result (Further Analysis) 

 

In this case study, there are several feasible alternatives for cutting patterns. The best result 

of cutting patterns from the SOS and PSO are shown in Table 7 and Table 8. These tables 

including the total waste, the cutting patterns, demand of rebar, and the total of pattern types, 

and the total feasible cutting pattern results from pattern generator by Pierce method is 124 

possible cutting patterns.  

 

Table 7. Cutting pattern results using the SOS (Ncp = 7) 

 
 

 

 

 

Pattern -Number of Bars (Bij)of Length Vj To be cut from the standard length

V1 (m) V2 (m) V3 (m) V4 (m) V5 (m) V6 (m) V7 (m) V8 (m)

1.55 2.3 3 4.15 5.5 6 8 9

17 3 0 1 1 0 0 0 0 200.6 204

83 3 0 0 0 1 0 0 0 842.45 996

19 1 3 1 0 0 0 0 0 217.55 228

162 1 1 0 0 0 0 1 0 1919.7 1944

342 0 1 0 0 0 0 0 1 3864.6 4104

749 0 0 0 0 1 1 0 0 8613.5 8988

1464 0 0 0 0 0 2 0 0 17568 17568

Demand 480 560 36 12 832 3676 162 342 33226.4 34032

Cut 481 561 36 17 832 3677 162 342

Surplus 1 1 0 5 0 1 0 0

Surplus 

Total 

bar(m) 1.55 2.3 0 20.75 0 6 0 0

2836

12 836.2

2.46%

No.  

Plan

Quantity of 

Pattern

Xi * Vi * Bij 

(Cutting Length)

Xi * L (Total 

Raw Bars 

Length)

30.6

Sum (Sum Xi)

Length of Raw Bar (m) Trim Loss (TRB - CL + SC)

Total  Waste (%) (Trim Loss/ TRB)*100

7

Total Surplus (m) (Sum Surplus Cut)
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Table 8. Cutting pattern results using the PSO (Ncp = 9) 

 
 

Afterward, the result comparison between the performance of SOS and PSO is shown in Table 

9. It shows that the SOS and PSO achieved the same result when the number of cutting 

pattern is 5. When the number of patterns is 6, 7 ,8, 9 and 10, SOS is superior to PSO in 

minimizing the length of raw material and total waste. It is also SOS is able to obtain the lowest 

material waste of 2.42% in Ncp 10 better results than PSO in pattern types of 6,7,8,9, and 10 

including total raw material along with the total waste. It is also SOS is able to obtain the lowest 

material waste of 2.42% in Ncp 10, followed by PSO which is obtain 2.83% of material waste 

with 9 number cutting patterns.  

 

Table 9. Comparison of the results between the SOS and PSO 

Metaheuristics 

Number of 

Cutting 

Patterns 

Total Length of 

Raw Material (m) 

Total 

Waste 

(%) 

SOS 

5 38088 12.84 

6 34512   3.81 

7 34032   2.46 

8 34056   2.53 

9 34044   2.49 

10 34020   2.42 

PSO 

5 38088 12.84 

6 35076   5.36 

7 34200   2.94 

8 34644   4.18 

9 34164   2.83 

10 34704   4.35 
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4.5 Pareto Trade-off Analysis (SOS results) 

In this section, Pareto bi-objective optimization was applied in order to achieve the solution 

between the number of cutting patterns and material waste. The number of cutting patterns 

and the total waste percentage for each cutting plan along with the rank of each objective are 

listed in Table 10.  

 

Table 10. Results of total waste, tw, and number of cutting patterns, ncp 

 

 

Next, each of the non-domination was calculated to determine their rank for each objective, 

by summing the rank values of these two objectives. Thus, the new rank was made, and it can 

identify the optimal trade-off solution. To be seen clearly besides using the table only, the 

Pareto tradeoff graph is provided to illustrate the results in Table 10, as it is shown in Figure 

4. 

 

1 12.84% 16 5 1 17 7

2 13.17% 18 5 1 19 11

3 12.84% 17 5 1 18 10

4 4.74% 15 6 4 19 11

5 3.81% 11 6 4 15 3

6 3.91% 13 6 4 17 7

7 3.58% 8 7 7 15 3

8 2.46% 2 7 7 9 1

9 3.85% 12 7 7 19 11

10 2.53% 4 8 10 14 2

11 3.78% 10 8 10 20 14

12 3.24% 6 8 10 16 5

13 2.49% 3 9 13 16 5

14 3.68% 9 9 13 22 16

15 4.51% 14 9 13 27 18

16 2.42% 1 10 16 17 7

17 2.53% 5 10 16 21 15

18 3.34% 7 10 16 23 17

Summarize

Number
Total 

Waste

Rank Based 

on Tw(1)

Number of 

cutting pattern

Rank Based 

on Ncp (2)

Total Rank 

(1) + (2)
Rank
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Figure 4. Pareto front between total waste and number of cutting pattern 

 

According to the B-RCP results, the cutting pattern plan #8 in Table 10 with the red point at 

Figure 4 has the highest rank, thus providing the best trade-off plan with regards to each 

objective. Specifically, cutting plan #8 has the Ncp of 7, and has the second-lowest total 

material waste at 2.46%, among all the 18 alternative cutting plans. In Figure 5 shows the best 

of non-dominated solutions from each of number cutting pattern. 

 

 
Figure 5. The non-dominated solutions in Pareto front 

 

In Figure 5, increasing the number of cutting pattern may not always reduce the material 

waste, as in the example of #7 to #8. From point #7 to #8, the material waste increase around 

0.07%. However, cutting plan #10 has the lowest material waste at 2.42%.  
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In practical cases, some of the site engineers suggest simplicity rather than waste to achieve 

efficient work. However, the decision makers can still make their choices according to the 

situation and personal judgment. Still, the presence of the non-dominated solutions provides 

adequate assistance to assist decision makers in determining the best cutting plan for 

reinforcement rebars. 

 

5. CONCLUSIONS 
 

This study introduces the B-RCP to investigate the optimal trade-off between reducing material 

waste and lowering the number of cutting patterns. The primary purpose of this study is to 

handle B-RCP to minimize the total waste of the utilization of reinforcing steel bars along with 

the number of cutting patterns that lead to simplicity to improve the constructability in 

construction site.  

 

The validation results from the real project case from Melhem et al. (2021) show that SOS is 

able to achieve better solutions compared to PSO and the paper result in both minimum total 

waste along with 5 types of cutting patterns in around 5 runs the of an experiment. SOS found 

the minimum waste of 8.21% compared to 9.53% for PSO in 5 types of cutting patterns. It is 

shown that the obtained cutting patterns for the projects can satisfy the demand for steel bars. 

Thus, it is shown that the proposed SOS algorithm can solve B-RCP with better results 

efficiently.  

 

For the further analysis results from the real project case of a 4-story building in Indonesia 

(D16) show that SOS could achieve better solutions compared to PSO in the minimum total 

waste (Tw) of each number cutting pattern in 5 runs of the experiment which indicates that 

SOS was not be trapped in the local optima solution and can escape to achieve better global 

solutions. SOS found a minimum total waste of 2.42% compared to 2.83% for PSO. From the 

Pareto Front, it is shown that the plan number 8 has the Ncp of 7, and has the second-lowest 

total material waste at 2.46%, among all the 18 alternative cutting plans. The Pareto front also 

shows that increasing the number of cutting patterns may not always reduce material waste.  
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