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ABSTRACT: Multi-resource allocation and leveling in multi-project (MR-AL-MP) scheduling 
refers to the attempt of producing a project schedule with minimum project duration and 
maximum resource utilization while complying with all precedence and resource availability 
constraints in a multi-project environment involving multiple resources. This study proposes a 
model that integrates both resource allocation and leveling models into a unified framework. 
This study develops a modified version of the Non-Dominated Sorting Genetic Algorithm II 
(NSGA-II), called Hybrid-Chromosome NSGA-II, as the optimization algorithm. For validation 
purposes, the performance of Hybrid-Chromosome NSGA-II is compared with two benchmark 
metaheuristic algorithms which are Multi-Objective Particle Swarm Optimization (MOPSO) 
and Multi-Objective Symbiotic Organisms Search (MOSOS) in optimizing a case study. It is 
shown that the proposed model and algorithm are able to produce a set of non-dominated 
solutions that represent the feasible trade-off relationships between the objectives. 
Furthermore, the Hybrid-Chromosome NSGA-II is superior to MOPSO and MOSOS in terms 
of the quality, spread, and diversity of the solutions. 
 
Keywords: resource allocation, resource leveling, multi-project scheduling problem, 
optimization, metaheuristic, hybrid-chromosome NSGA-II 
 
 
1. INTRODUCTION 
 

Project management is the application of skills, methods, or techniques in order to achieve 

certain project objectives, and one of them is a specific completion date that has to be satisfied 

based on the relevant contract document (Son and Matilla, 2004). Several well-known 

techniques, such as basic Critical Path Method (CPM) and Program Evaluation and Review 

Technique (PERT), have been extensively used as major tools for construction project 

scheduling. However, those techniques usually assume unlimited resource availability, which 

is not relevant to practical circumstances (Zhang et al., 2006), and also possibly cause 

undesirable resource fluctuations and peak demands (Jun and El-Rayes, 2011). Resource 

fluctuations and peak demands are inefficient and costly to implement due to the possibility of 

disrupting the learning curve effects, needing to release and rehire resources on a short-term 

basis, and even causing some resources to be idle on the site, especially during low demand 

periods (El-Rayes and Jun, 2009). Therefore, it is important to schedule the project activities 

subject to the constraints of resource availability and resource usage variation. 
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The resource allocation model, or also known as the resource-constrained model, attempts to 

overcome the resource conflicts that may occur between activities while maintaining the 

shortest possible project duration. On the other hand, the resource leveling model is used to 

minimize the resource fluctuations within a fixed project duration to achieve maximum 

resource utilization efficiency. Despite being two individual subproblems (Hegazy, 1999), 

these two models are both essential to produce a project schedule with the shortest possible 

duration and maximum resource utilization efficiency while complying with all the resource 

availability constraints. The present study aims to integrate both resource allocation model 

and resource leveling model in a single unified model.  

 

2. LITERATURE REVIEW 
 
2.1. Resource Allocation Model 

The resource allocation model is a model used to produce a project schedule with minimum 

project duration while complying with all the resource availability constraints, or also known as 

resource-constrained project scheduling problem (RCPSP). Basically, the RCPSP can be 

formulated as follows (Zhang et al., 2005): 

min{𝑚𝑎𝑥𝐹𝑖|𝑖 = 1,2,… ,𝑁} (1) 

Subject to  

𝐹𝑗 ≤ 𝐹𝑖 − 𝐷𝑖 , ∀𝑗 ∈ 𝑃𝑖; 𝑖 = 1,2,… ,𝑁 (2) 

∑𝑟𝑖𝑘 ≤ 𝑅𝑘 , 𝑘 = 1,2, … , 𝐾; 𝑡 = 𝑆1, 𝑆2, … , 𝑆𝑁
𝐴𝑡

 (3) 

Where: 

𝑁  = Number of activities 

𝐹𝑖  = Finish time of activity 𝑎𝑖 

𝐷𝑖  = Duration of activity 𝑎𝑖 

𝑃𝑖  = Predecessors of activity 𝑎𝑖 

𝑅𝑘  = Amount of resource 𝑘 available 

𝐾  = Number of resource types 

𝑟𝑖𝑘  = Amount of resource 𝑘 needed for activity 𝑎𝑖 

𝐴𝑡  = Ongoing activities at 𝑡 

𝑆𝑖  = Start time of activity 𝑎𝑖 

2.2. Resource Leveling Model 

The resource leveling model can be used to minimize the resource usage fluctuations and 

avoid peak demands that might occur in a construction project (Zhao et al., 2006). Basically, 

the resource leveling model works by shifting or moving the non-critical activities within their 

available total floats in order to produce a project schedule with the best resource utilization 

(Harris, 1978; Popescu and Charoenngam, 1995). 

 

To handle resource leveling, researchers have been developing various metrics, with one of 

the first and most common metrics being the sum of squares method (Burgess and Killebrew, 

1962). Other metrics, such as the deviation between the required and available resources 
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(Chan et al., 1996), resource intensity (Guo et al., 2009), and release and rehire the resource 

idle days (El-Rayes and Jun, 2009), have also been developed by various researchers. Most 

of the more conventional metrics may not be as practical as they usually aim to match a 

predetermined resource profile, especially uniform shape (Ponz-Tienda et al., 2017), and 

thereby overlooking possible alternatives shapes of resource profiles that are efficient. 

 

Instead of just matching a predetermined resource profile, the two metrics developed by El-

Rayes and Jun (2009), release and rehire (𝑅𝑅𝐻) and resource idle days (𝑅𝐼𝐷), have the ability 

to directly measure undesirable fluctuations, and thus they are adopted in this study. Basically, 

𝑅𝑅𝐻 measures the resource release and rehire that occurs in a project if such practice is 

allowed, while 𝑅𝐼𝐷 measures the idle days of each resource if the idle resources are required 

to stay on site instead of being released and rehired at a later time. Since these two issues 

are different and do not occur concurrently, only one of the two metrics will be considered at 

a time. Furthermore, since 𝑅𝑅𝐻 and 𝑅𝐼𝐷 only attempt to minimize the occurrence of the valley 

shapes, it completely overlooks the need of minimizing the mountain shapes in the resource 

profile. Therefore, a third metric developed by Guo et al. (2009) called resource intensity (𝑅𝐼) 

is also employed as one of the objectives in order to reduce resource usage fluctuations in 

general. The formulas of the three objective functions are expressed in equation (4), (5), (6), 

(7), (8), (9), and (10) below. 

𝑅𝑅𝐻 = 𝐻 −𝑀𝑅𝐷 =
1

2
× 𝐻𝑅 −𝑀𝑅𝐷 (4) 

𝐻𝑅 = [𝑟1 +∑|𝑟𝑡 − 𝑟𝑡+1| + 𝑟𝑇

𝑇−1

𝑡=1

] (5) 

𝑀𝑅𝐷 = 𝑀𝑎𝑥(𝑟1, 𝑟2, … , 𝑟𝑇) (6) 

Where: 

𝑅𝑅𝐻  = Release and rehire 

𝐻  = Total increases in the daily resource demand 

𝑀𝑅𝐷  = Maximum resource demand 

𝐻𝑅  = Total daily resource fluctuations 

𝑇  = Total project duration 

𝑟𝑡  = Resource demand on day 𝑡 

𝑟𝑡+1  = Resource demand on day (𝑡 + 1) 

𝑅𝐼𝐷 =∑[𝑀𝑖𝑛{𝑀𝑎𝑥(𝑟1, 𝑟2, … , 𝑟𝑡),𝑀𝑎𝑥(𝑟𝑡 , 𝑟𝑡+1, … , 𝑟𝑇)} − 𝑟𝑡]

𝑇

𝑡=1

 
(7) 

Where: 

𝑅𝐼𝐷  = Resource idle days 

𝑇  = Total project duration 

𝑟𝑡  = Resource demand on day 𝑡 

𝑟𝑡+1  = Resource demand on day (𝑡 + 1) 

𝑹𝑰 =
𝟏

𝑻
∑ ∑[𝒘𝒎(𝑺𝑹𝒎(𝒕) − 𝑺𝑹𝒎)

𝟐]

𝒑

𝒎=𝟏

𝑻

𝒕=𝟏

 (8) 

𝑆𝑅𝑚 =
1

𝑇
∑𝑆𝑅𝑚(𝑡)

𝑇

𝑡=1

 (9) 
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𝑆𝑅𝑚(𝑡) = 𝜆𝑅𝑚(𝑡)/𝑅𝑚𝑎𝑥𝑚 (10) 

 

Where: 

𝑅𝐼  = Resource intensity 

𝑇  = Overall project duration 

𝑤𝑚  = Weight of resource 𝑚 

𝑆𝑅𝑚(𝑡) = Relative demand of resource 𝑚 in all projects on day 𝑡 

𝑆𝑅𝑚  = Average of relative demand 

𝜆  = Amplifying coefficient [1,100] 

𝑅𝑚(𝑡)  = Total demand of resource 𝑚 in all projects on day 𝑡 

 

2.3. Multi-Resource Allocation and Leveling in Multi-Project Scheduling Problem 

 

The main objectives in resource allocation and leveling problem are minimizing the project 

duration and resource fluctuations that occur. The basic concept is to apply the resource 

allocation model first in order to find a new project schedule whose resource profile satisfies 

the resource availability constraints. Then, apply the resource leveling model by shifting the 

non-critical activities based on the total floats (the amount of time an activity can be delayed 

without delaying the overall project duration) from the newly obtained schedule. In the past 

few decades, there have been various researchers that attempt in combining these two 

models together described as follows. 

a. Hegazy (1999) developed a new model called double moments as an improvement of a 

previously developed heuristic resource leveling metrics called minimum moment. This 

new metric was used to solve a single project problem that consists of 20 activities and six 

types of resources using Genetic Algorithms (GAs) as the optimization algorithm. 

b. Wu et al. (2008) attempted to solve a multi-resource allocation and leveling optimization 

using a self-adaptive ant colony algorithm and further conducted a comparison study with 

genetic algorithms. This study used minimum moment around the vertical axis of the 

resource histogram as the resource leveling metric. 

c. Jun and El-Rayes (2011) developed a three-module novel multi-objective optimization 

model to minimize undesirable resource fluctuations and project duration while complying 

with all available constraints. Their study used release and rehire and resource idle days 

as the resource leveling metrics and multi-objective genetic algorithm as the optimization 

algorithm to solve a single project scheduling problem with multiple resources. 

d. Koulinas and Anagnostopoulos (2013) used a tabu search-based hyper-heuristic 

algorithm to solve resource leveling problems with resource availability constraints and 

predetermined maximum project duration. In this study, the resource leveling objective is 

to minimize the sum of the squared deviations of the resource requirements to achieve the 

ideal resource histogram, which is the rectangle shape. 

e. Khanzadi et al. (2016) used two new metaheuristic algorithms, colliding body optimization 

and charged system search, to solve a single-project resource allocation and leveling 

problem. This study minimizes the resource moment deviation on the horizontal axis as 

the resource leveling objective. 

 

In the real-life situation, construction companies usually work on multiple projects at the same 

time (Chen and Shahandashti, 2009). In order to schedule multiple projects simultaneously, 

there are two approaches that can be used, namely multi-project approach and mono-project 
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approach. In the multi-project approach, each project has its own ‘start’ and ‘end’ dummy 

activities, whereas in mono-project approach, all the projects are combined into a single 

project by adding ‘start’ and ‘end’ dummy activities to connect all the projects (Lova and 

Tormos, 2001). 

Furthermore, construction projects always involve multiple resources, which make the 

optimization process more complex. Guo et al. (2009) stated that in a multi-resource problem, 

since each resource has different demand, it is necessary to transform absolute demand into 

relative demand by dividing it by the corresponding maximum resource demand so that the 

resources are comparable in quantity. The use of weight factors is also essential to represent 

the degree of importance of each resource. A bigger value of weight factor indicates a higher 

priority of the corresponding resource. 

 

2.4. Multi-Objective Optimization 

 

Multi-objective optimization is used to solve optimization problems with two or more objectives 

that are usually conflicting with each other (Cui et al., 2017). The goal is to obtain a set of 

acceptable trade-off solutions from which a decision maker can select, which is usually 

referred to as the Pareto front. In the attempt of comparing the possible solutions, Pareto 

optimality concepts are often used (Ngatchou et al., 2005). 

 

In the world of optimization, two methods are mainly used, namely analytical method and 

numerical method. The analytical method solves a problem by finding the exact solution, which 

is not suitable to be used in a rather complex problem. Conversely, the numerical method, 

such as the heuristic algorithm, works through a series of iterations to get an acceptable near 

optimal solution (Cui et al., 2017). As the latest generation of the heuristic algorithm (Alcaraz 

and Maroto, 2001), metaheuristic algorithms (strategies that guide the search to efficiently find 

the near–optimal solutions) are proven to be more viable and superior than the other traditional 

methods (Sörensen and Glover, 2013), and thereby more often used in the present time, 

especially for multi-objective optimization problems. Some of the most popular multi-objective 

metaheuristic algorithms are Non-Dominated Sorting Genetic Algorithm II (NSGA-II) (Deb et 

al., 2002) and Multi-Objective Particle Swarm Optimization (MOPSO) (Coello and Lechuga, 

2002). Recently, a rather new and interesting multi-objective metaheuristic algorithm called 

Multi-Objective Symbiotic Organisms Search (MOSOS) (Tran et al., 2016) has also been 

developed. For the optimization process, this study proposes a slightly modified version of 

NSGA-II, called hybrid-chromosome NSGA-II, whose performance will be compared with both 

MOPSO and MOSOS algorithm. 

 

3. RESEARCH METHODOLOGY 
 

The proposed model consists of two phases that work sequentially. The first phase, which 

focuses on the resource allocation, attempts to create a new project schedule that satisfies all 

resource availability constraints using priority-based representation as the solution 

representation. The priority-based representation works by shifting the activities with 

conflicting resources based on their Priority Value (𝑃𝑛1). Activities with greater 𝑃𝑛1 will be 

prioritized to stay, whereas activities with smaller 𝑃𝑛1 will be shifted first. The new schedule 

obtained from the first phase will then be further adjusted in the second phase. 
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The second phase focuses on implementing the resource leveling model to shift the non-

critical activities of the newly obtained schedule based on their available total float. The 

number of days an activity will be shifted is determined by its Shift Value (𝑆𝑛). The 𝑆𝑛 of each 

activity is represented by a certain number that plays a part in determining the start day of an 

activity. Furthermore, this phase also adopts priority-based representation, denoted by 𝑃𝑛2, to 

determine which activities are eligible in getting that portion of total float first. Activities with 

greater 𝑃𝑛2 will be prioritized in getting the total float. 

This study proposes the use of a modified NSGA-II called Hybrid-Chromosome NSGA-II. The 

name comes from the different characteristics that the decision variables have. In the 

proposed model, the decision variables consist of two different types of numbers, specifically 

permutation sequence to represent the 𝑃𝑛1 and 𝑃𝑛2 and continuous real value to represent 

the 𝑆𝑛. Therefore, this model requires different types of crossover and mutation operators. For 

the crossover operator performed on 𝑃𝑛1 and 𝑃𝑛2, the single point partially-mapped crossover 

is used. Conversely, for the 𝑆𝑛, this model adopts a commonly used single point crossover 

operator that works by swapping a certain part of a chromosome with another chromosome. 

For the mutation operators, this model works by swapping two different genes for the 𝑃𝑛1 and 

𝑃𝑛2 and assigning a new random number for the 𝑆𝑛. The schedule generation process will be 

explained using an illustration of a chromosome illustrated in Figure 1.  

 

Figure 1. Chromosome illustration 

As mentioned before, the schedule generation begins with the implementation of the resource 

allocation model based on the decision variable 𝑃𝑛1. From the chromosome presented in 

Figure 1, each activity 1, 2, 3, and 4 has a 𝑃𝑛1 of 1, 3, 2, and 4, respectively. Therefore, activity 

4 has the highest priority, while activity one has the lowest priority. Based on 𝑃𝑛1, the activities 

will be shifted until all the resource availability constraints are satisfied. From this process, a 

new schedule is obtained.  

The new schedule will be modified again using the resource leveling model based on the new 

total float of each activity, 𝑃𝑛2, and 𝑆𝑛. According to Figure 1, each activity 1, 2, 3, and 4 has 

a 𝑃𝑛2 of 2, 3, 4, and 1, respectively. It means that activity 3, with a 𝑃𝑛2 of 4, has the highest 

priority in getting the total float first, while activity 4 has the lowest. The amount of total float 

for an activity depends on the corresponding 𝑆𝑛. Firstly, in order to guarantee that this process 

does not produce a schedule that violates the resource availability constraints, the shifting of 

each activity involves a checking process that is adopted from the study carried out by Jun 

and El-Rayes (2011). The activity shifting is performed on the non-critical activities, whose 

total floats are not 0, by performing the following steps.  

A numerical example is also provided below, assuming activity 3 is not critical, has a duration 

of 1 and a total float of 5, and starts on day 4, based on the new schedule. An illustration of 

the activity shifting is given in Figure 2. 
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Figure 2. Activity shifting illustration 

1. Based on the information provided, define the start time of activity 3, which is 4, as the 

earliest possible start time (𝐸𝑃𝑆𝑇). The latest possible start time (𝐿𝑃𝑆𝑇) is obtained by 

adding the total float to the start time, which is calculated as 𝐿𝑃𝑆𝑇 = 4 + 5 = 9. 

2. From the 𝐸𝑃𝑆𝑇 and 𝐿𝑃𝑆𝑇, it can be concluded that activity 3 can possibly start on between 

day 4 and 9. 

3. Check if any of those days will produce a schedule that violates the resource availability 

constraints. Based on Figure 2, it can be seen that the constraints are violated if activity 3 

starts on day 8 and 9. 

4. By eliminating day 8 and 9 as the start time of activity 3, the possible start time (𝑃𝑆𝑇) of 

activity 3 will be 𝑃𝑆𝑇3 = [4, 5, 6, 7]. 

5. From the previously obtained 𝑃𝑆𝑇, the total number of the possible start time (𝑇𝑃𝑆𝑇) of 

activity 3 is defined as 4, as there are four possible start times. 

6. From there, the matrix index that represents the new start time of each activity, based on 

its corresponding 𝑃𝑆𝑇, is obtained by following equation (11). 

𝑆𝑆𝐷𝑛 = ⌈𝑆𝑛 × 𝑇𝑃𝑆𝑇𝑛⌉ 
(11) 

Where: 

𝑆𝑆𝐷𝑛 = Selected start day of activity 𝑛 

𝑆𝑛 = Shift value of activity 𝑛 

𝑇𝑃𝑆𝑇𝑛 = Total possible start time of activity 𝑛 

Then, the matrix index of 𝑃𝑆𝑇3  can be calculated as: 𝑆𝑆𝐷3 = ⌈0.67 × 4⌉ = ⌈2.68⌉ = 3 . 

Therefore, from 𝑃𝑆𝑇3 = [4, 5, 6, 7], the chosen start day of activity 3 is 6. 

7. These steps are repeated for all the non-critical activities. 

 

The proposed framework of the Hybrid-Chromosome NSGA-II for handling the multi-resource 

allocation and leveling in multi-project (MR-AL-MP) scheduling problem is illustrated through 

a flowchart presented in Figure 3. 
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Figure 3. Flowchart of the proposed hybrid-chromosome NSGA-II algorithm 

 

4. CASE STUDY 
 
This case study is used to evaluate the performance of the Hybrid-Chromosome NSGA-II by 

comparing it with two other metaheuristic algorithms (MOPSO and MOSOS) in terms of the 
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hypervolume and the computational time obtained from five runs. The approximate 

hypervolume is obtained by computing the number of solutions dominated by the pareto fronts 

out of one million solutions that are spreading uniformly. For the case study, two experiments 

are conducted. The first experiment attempts to minimize the project duration, 𝑅𝑅𝐻, and 𝑅𝐼, 

whereas the second experiment attempts to minimize the project duration, 𝑅𝐼𝐷, and 𝑅𝐼. 

 

4.1. Project Information 

 

The case study is retrieved from Dalfard and Ranjbar (2012). The case study consists of five 

projects with each of them having six activities and involving four different types of resources 

(R1, R2, R3, and R4). The daily resource usage is limited to 35 for each type of resource. This 

study assumes that each resource has the same weight factor. The complete data and the 

precedence networks of all the projects are presented in Table 1 and Figure 4. 

Table 1. Project data 

Activity 
Duration 

(days) 
Predecessors 

Daily Resource Requirements 

R1 R2 R3 R4 

1 1 - 1 9 6 10 

2 3 - 3 7 0 7 

3 4 1, 2 6 8 2 1 

4 5 1, 2 7 5 8 2 

5 2 3, 4 8 4 0 2 

6 2 3, 4 6 0 8 9 

7 5 - 10 3 7 10 

8 2 - 8 6 8 2 

9 1 - 6 0 3 0 

10 5 7, 8 8 0 0 10 

11 2 9, 10 10 9 9 10 

12 4 7, 8, 9 4 2 6 2 

13 4 - 10 5 3 0 

14 4 - 0 3 0 6 

15 2 - 0 8 3 6 

16 3 13, 14 9 5 2 10 

17 4 13, 14, 15 5 0 0 4 

18 5 15, 16 2 6 0 0 

19 2 - 4 8 9 0 

20 3 - 0 4 1 9 

21 2 - 9 2 7 0 

22 3 19, 21 0 7 3 0 

23 1 20, 22 8 9 6 6 

24 3 19, 20, 21 0 10 0 3 

25 2 - 0 8 0 0 

26 1 25 0 2 8 0 

27 1 25 0 0 8 3 

28 5 25 2 8 0 0 

29 5 26, 27, 28 0 1 0 0 

30 1 26, 27, 28 0 4 0 7 

Daily Resource Limits 35 35 35 35 
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Figure 4. Project precedence network 

 

4.2. Parameter Selection 

 

In order to provide a fair comparison, the number of function evaluations of each algorithm 

must be the same. In each iteration, the Hybrid-Chromosome NSGA-II and MOPSO do one 

function evaluation, whereas the MOSOS does four. Therefore, the number of iterations of the 

Hybrid-Chromosome NSGA-II and MOPSO must be four times as many as that of the 

MOSOS. Same as the previous study, the value of 𝜆 is assumed to be 30. The parameter 

selection of each algorithm is presented in Table 2. 
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Table 2. Parameter selection 

Algorithm Parameters Value 

Hybrid-Chromosome NSGA-II 

Population size 100 

Number of iterations 1000 

Crossover rate 𝐶𝑅 0.9 

Mutation rate 𝑀𝑅 0.2 

Mating pool size 30 

MOPSO 

Population size 100 

Number of iterations 1000 

𝑤 0.5 

𝑐1 2 

𝑐2 2 

MOSOS 
Population size 100 

Number of iterations 250 

  

4.3. Results and Comparison 

 

The hypervolume calculation results are presented in Table 3 and 4, with the green highlight 

indicating the best hypervolume. 

Table 3. Hypervolume calculation results of experiment 1 

Algorithm Run 
Number of 

Solutions 

Hypervolume 

(%) 
Average 

Standard 

Deviation 

Hybrid-Chromosome 

NSGA-II 

1 12 60.85 

65.12 7.20 

2 12 59.52 

3 9 65.18 

4 11 62.61 

5 9 77.44 

MOPSO 

1 4 42.93 

38.82 9.22 

2 7 37.91 

3 4 43.13 

4 8 23.32 

5 3 46.80 

MOSOS 

1 5 55.52 

51.40 4.40 

2 4 56.70 

3 6 47.03 

4 3 48.31 

5 4 49.48 

 

Table 4. Hypervolume calculation results of experiment 2 

Algorithm Run 
Number of 

Solutions 

Hypervolume 

(%) 
Average 

Standard 

Deviation 

Hybrid-

Chromosome 

NSGA-II 

1 21 59.09 

59.72 11.89 

2 15 52.30 

3 29 79.81 

4 31 57.87 

5 26 49.55 

MOPSO 1 3 42.42 43.46 3.34 
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2 5 44.14 

3 5 46.14 

4 7 46.39 

5 6 38.23 

MOSOS 

1 7 51.33 

55.27 7.40 

2 10 58.00 

3 7 65.44 

4 3 55.92 

5 4 45.67 

 

Table 3 and 4 show that the Hybrid-Chromosome NSGA-II algorithm outperforms both 

MOPSO and MOSOS in terms of the average value of the hypervolume. However, MOSOS 

and MOPSO show better consistency by obtaining the smallest value of standard deviation in 

both experiment 1 and experiment 2, respectively. Furthermore, it can be seen from Table 3 

that the smallest hypervolume obtained by Hybrid-Chromosome NSGA-II (59.5232%) is still 

greater than the biggest hypervolume obtained by both MOPSO (46.8008%) and MOSOS 

(56.6968%), and thereby validating the superior performance of the Hybrid-Chromosome 

NSGA-II algorithm. 

 

Based on Table 4, the smallest hypervolume obtained by Hybrid-Chromosome NSGA-II 

(52.3002%) only surpasses the biggest hypervolume obtained by MOPSO (46.388%). 

Therefore, further statistical test (Mann-Whitney Test) is needed to compare the hypervolume 

obtained by Hybrid-Chromosome NSGA-II and MOSOS in experiment 2, with 𝐻0: the two 

algorithms perform equally and 𝐻1: the two algorithms perform differently. The ranks of the 

hypervolume from all five runs, sorted from the smallest to the largest (where rank 1 is the 

smallest and rank 10 is the highest), are presented in Table 5.  

Table 5. The ranks of the hypervolume 

Hybrid-Chromosome NSGA-II 8 4 10 6 2 

MOSOS 3 7 9 5 1 

From Table 5, the value of 𝑊1 and 𝑊2 can be obtained by calculating the sum of the ranks: 

𝑊1 = 8 + 4 + 10 + 6 + 2 = 30, 𝑊2 = 3 + 7 + 9 + 5 + 1 = 25. Then, the value of 𝑈1 and 𝑈2 can 

be calculated using these two equations below, where 𝑛1  and 𝑛2  are the number of 

participants of each group. 

𝑈1 = 𝑛1𝑛2 +
𝑛1(𝑛1 + 1)

2
−𝑊1 

= 5 × 5 +
5(5 + 1)

2
− 30 

= 10 

 

(12) 

𝑈2 = 𝑛1𝑛2 +
𝑛2(𝑛2 + 1)

2
−𝑊2 

= 5 × 5 +
5(5 + 1)

2
− 25 

= 15 

(13) 
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From 𝑈1 and 𝑈2, the smallest value of the two is selected: 𝑈 = 10. Based on the reference 

table for Mann-Whitney Test, the 𝑃 value is 0.345 for 𝑛 = 5 and 𝑈 = 10. Therefore, it can be 

concluded that none of these two algorithms performs better statistically than the other (𝐻0 is 

not rejected) in significance level 𝛼 = 0.05, as the value of 𝑃 = 0.345 is greater than 0.05. 

Furthermore, the computational time of each algorithm from both experiments are also 

presented in Table 6 and 7. 

Table 6. Computational time of experiment 1 

Algorithm Run 
Number of 

Solutions 

Time 

(Minutes) 
Average 

Standard 

Deviation 

Hybrid-Chromosome 

NSGA-II 

1 12 32.83 

33.46 0.78 

2 12 32.72 

3 9 33.23 

4 11 34.53 

5 9 33.97 

MOPSO 

1 4 47.06 

48.03 1.33 

2 7 47.99 

3 4 46.70 

4 8 48.30 

5 3 50.11 

MOSOS 

1 5 52.19 

51.56 0.39 

2 4 51.63 

3 6 51.17 

4 3 51.36 

5 4 51.47 

 

Table 7. Computational time of experiment 2 

Algorithm Run 
Number of 

Solutions 

Time 

(Minutes) 
Average 

Standard 

Deviation 

Hybrid-Chromosome 

NSGA-II 

1 21 34.20 

34.70 2.86 

2 15 32.93 

3 29 34.96 

4 31 39.40 

5 26 32.00 

MOPSO 

1 3 51.83 

52.06 1.07 

2 5 50.84 

3 5 53.05 

4 7 53.25 

5 6 51.27 

MOSOS 

1 7 54.01 

53.49 0.34 

2 10 53.11 

3 7 53.30 

4 3 53.55 

5 4 53.49 

 

It can be seen from Table 6 and 7 that the Hybrid-Chromosome NSGA-II algorithm shows 

faster computational time compared to both MOPSO and MOSOS, with an average 

computational time of 33.4573 and 34.69762 minutes for experiment 1 and experiment 2, 
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respectively. In terms of consistency, MOSOS shows better performance compared to both 

Hybrid-Chromosome NSGA-II and MOPSO. 

 

In order to give a more detailed explanation about the trade-off among the objectives, the 

solutions from the best hypervolume are presented in Table 8 for experiment 1 and Table 9 

for experiment 2. The green highlight indicates where the minimum objective values occur. 

 

Table 8. Solutions from the best hypervolume of experiment 1 

Algorithm Solution Project Duration 𝑹𝑹𝑯 𝑹𝑰 

Hybrid-Chromosome 

NSGA-II 

1 13 7.25 6.67 

2 14 6.75 16.96 

3 14 7 16.51 

4 15 5.25 18.76 

5 15 5.5 18.44 

6 15 5.75 18.38 

7 15 6 18.37 

8 15 6.5 16.22 

9 15 6.75 15.90 

MOPSO 

1 14 7.5 12.84 

2 14 8 12.37 

3 14 8.75 11.42 

MOSOS 

1 13 14 10.02 

2 14 6.5 14.97 

3 14 7.5 14.03 

4 14 9.25 12.75 

 

Table 9. Solutions from the best hypervolume of experiment 2 

Algorithm Solution Project Duration 𝑹𝑰𝑫 𝑹𝑰 

Hybrid-Chromosome 

NSGA-II 

1 13 12 17.58 

2 13 13.25 13.90 

3 13 13.5 13.44 

4 13 14.75 13.22 

5 13 15.5 12.94 

6 13 15.75 9.73 

7 13 17.25 8.10 

8 13 17.5 8.074 

9 13 18 8.05 

10 13 18.25 8.02 

11 14 6.5 19.05 

12 14 6.75 15.22 

13 14 7 14.97 

14 14 7.25 12.92 

15 14 7.5 12.67 

16 14 7.75 12.42 

17 14 8 12.33 

18 14 8.5 12.16 

19 14 8.75 11.91 

20 14 9.25 11.38 

21 14 9.5 9.42 
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22 14 10 8.92 

23 14 10.25 8.85 

24 14 11 8.63 

25 14 11.25 8.16 

26 14 11.5 8.11 

27 14 12 7.94 

28 14 12.75 7.78 

29 14 14.25 7.75 

MOPSO 

1 13 20.75 18.40 

2 13 25.5 14.64 

3 13 30.5 12.03 

4 14 17.25 14.71 

5 14 17.5 14.02 

6 14 19.75 12.99 

7 15 16.25 29.81 

MOSOS 

1 13 19.5 10.93 

2 14 8.5 16.93 

3 14 14.5 11.26 

4 14 14.75 10.84 

5 14 15 10.73 

6 14 16.75 10.56 

7 14 19 8.95 

 

Table 8 shows the solutions from the best hypervolume of experiment 1. It can be seen that 

the Hybrid-Chromosome NSGA-II algorithm is able to produce the minimum value of all the 

objectives, which are 13 days for the project duration, 5.25 for the 𝑅𝑅𝐻, and 6.67 for the 𝑅𝐼. 

Moreover, both the minimum project duration and 𝑅𝐼 come from the same solution (solution 1 

obtained by Hybrid-Chromosome NSGA-II). Additionally, MOSOS is also able to find a solution 

with a minimum project duration of 13 days. Table 8 clearly shows the superiority of Hybrid-

Chromosome NSGA-II compared to the other two benchmark algorithms.  

 

Table 9 shows the solutions from the best hypervolume of experiment 2. Table 9 also clearly 

shows that the Hybrid-Chromosome NSGA-II algorithm manages to find the minimum value 

of all the objectives, which are 13 days for the project duration, 6.5 for the 𝑅𝐼𝐷, and 7.75 for 

the 𝑅𝐼. Additionally, the minimum project duration of 13 days is also found by MOPSO and 

MOSOS. It can also be seen that the number of non-dominated solutions found by Hybrid-

Chromosome NSGA-II is also greater than both MOPSO and MOSOS. Therefore, it can be 

concluded that Hybrid-Chromosome NSGA-II also demonstrates better spread of the solutions 

based on Table 9. 

 

The plots of all the solutions are illustrated in Figure 5 for experiment 1 and Figure 6 for 

experiment 2. Figure 5 and 6 show that the solutions produced by the Hybrid-Chromosome 

NSGA-II algorithm have better spread and diversity compared to the ones obtained by the 

other two benchmark algorithms, MOPSO and MOSOS.  
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Figure 5. Plotted solutions of the best hypervolume of experiment 1 

 

 

Figure 6. Plotted solutions of the best hypervolume of experiment 2 

 

In order to illustrate the solutions better, the Gantt-Chart of solution 1 obtained by the Hybrid-

Chromosome NSGA-II algorithm from experiment 1 is illustrated in Figure 7, while the 

distribution of R1 until R4 are illustrated in Figure 8 until Figure 11 with the dashed line 

representing the daily resource limits. This solution is selected as an example since it 

produces two minimum values out of the three objectives.  
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Figure 7. The gantt-chart of solution 1 obtained by hybrid-chromosome NSGA-II from experiment 1 

 

Figure 8. R1 distribution of solution 1 obtained by hybrid-chromosome NSGA-II from experiment 1 
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Figure 9. R2 distribution of solution 1 obtained by hybrid-chromosome NSGA-II from experiment 1 

 

Figure 10. R3 distribution of solution 1 obtained by hybrid-chromosome NSGA-II from experiment 1   

 

Figure 11. R4 distribution of solution 1 obtained by hybrid-chromosome NSGA-II from experiment 1  

 

From the Gantt-Chart shown in Figure 7 and resource distribution shown in Figure 8 until 

Figure 11, it is proven that the proposed model and algorithm are able to solve the MR-AL-MP 

scheduling problem by producing alternative project schedules that satisfy both the 

precedence and resource availability constraints.  

 

 



Alvin: Multi-Resource Allocation and Leveling in Multi-Project Scheduling Problem 

250 

 

5. CONCLUSIONS 
 

This study focuses in creating a unified framework to handle the MR-AL-MP scheduling 

problem by producing a set of alternative project schedules from which a project manager can 

select the most preferred schedule based on practical management needs. This study 

formulates the MR-AL-MP scheduling model to find the trade-off between minimum project 

duration and maximum resource utilization, while complying with all precedence and resource 

availability constraints. To be more practical, the proposed model is framed in a multi-project 

environment that involves multiple types of resources. The considered optimization objective 

functions include project duration, 𝑅𝑅𝐻 or 𝑅𝐼𝐷, and 𝑅𝐼. 

 

The MR-AL-MP scheduling model is solved by the Hybrid-Chromosome NSGA-II algorithm. 

For the purpose of validation, two case studies are used to validate and evaluate the 

performance of the proposed model and algorithm, while also providing a comparison with two 

other benchmark algorithms (MOPSO and MOSOS). From the results obtained, it is proven 

that the proposed model, along with the Hybrid-Chromosome NSGA-II, is able to provide a set 

of feasible solutions for the MR-AL-MP scheduling problem. Furthermore, the Hybrid-

Chromosome NSGA-II outperforms the MOPSO and MOSOS in terms of solution quality, 

spread, and diversity.  

 

For future studies, the following suggestions are proposed: 

a. This study attempts to handle scheduling problems in a multi-project environment, 

meaning that the resources are shared among the projects. Therefore, resource 

mobilization is an important matter to be discussed as it involves some critical resources, 

including money. It will certainly be beneficial if further studies can consider resource 

mobilization, such as transportation cost and time, as one of the determining factors. 

b. The proposed model currently is only able to handle scheduling problems with single-mode 

activities. The use of multi-mode can provide more flexibility as each activity will have 

different alternatives on how it is executed, especially in terms of the duration and the 

number of resources involved. Future work can be devoted to handle multi-mode activities. 

c. The proposed model employs the 𝑅𝑅𝐻 or 𝑅𝐼𝐷 as one of the objectives, and thus only 

considers the utilization of renewable resources. However, in real life situation, the use of 

non-renewable resources, such as money and material, in construction projects is 

inevitable. Therefore, it will be beneficial if further studies can extend the proposed model 

to consider non-renewable resources. 
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