ANALISIS NON-LINEAR STRUKTUR TENSEGRITY MENGGUNAKAN TOTAL POTENTIAL ENERGY OPTIMIZATION WITH METAHEURISTIC METHODS (TPO/MA)

  • Denalyn Tanist Istianto Petra Christian University
  • Wong Foek Tjong Petra Christian University
  • Doddy Prayogo Petra Christian University
Keywords: analisis non-linear, prinsip energi minimum, tensegrity, TPO/MA, metaheuristik

Abstract

Total potential energy optimization with metaheuristic methods (TPO/MA) adalah metode analisis struktur yang berdasarkan pada prinsip energi minimum. Metode ini dapat melakukan analisis non-linear pada berbagai struktur tanpa modifikasi yang signifikan dalam prosesnya. Salah satu struktur yang bersifat sangat non-linear adalah struktur tensegrity. TPO/MA dengan tiga algoritma metaheuristik yaitu teaching–learning-based optimization (TLBO), harmony search (HS), dan symbiotic organisms search (SOS) diaplikasikan dalam analisis non-linear geometri pada struktur tensegrity dua dan tiga dimensi. Analisis struktur dilakukan dengan pemberian beban bertahap (incremental) untuk menghasilkan grafik load-displacement yang menunjukkan perilaku non-linear struktur. Hasil penelitian menunjukkan TPO/MA dapat melakukan analisis non-linear pada struktur tensegrity dengan akurasi dan konsistensi yang tinggi. TLBO dan SOS memiliki performa yang lebih baik dibandingkan HS dalam menyelesaikan analisis non-linear pada struktur tensegrity menggunakan TPO/MA.

References

Bekdaş, G., Kayabekir, A. E., Nigdeli, S. M., and Toklu, Y. C. (2019). “Advanced energy-based analyses of trusses employing hybrid metaheuristics.” Structural Design of Tall and Special Buildings. Vol. 28, No. 9.

Cheng, M. Y., and Prayogo, D. (2014). “Symbiotic organisms search: a new metaheuristic optimization algorithm.” Computers and Structures, Vol. 139, 98-112.

Emmerich, D. G. (1963). Construction de reseaux autotendants. (French Patent No.FR1377290A).

Fuller, R. B. (1962). Tensile-integrity structures. (American Patent No. US3063521A).

Geem, Z. W., Kim, J. H., and Loganathan, G. V. (2001). “A new heuristic optimization algorithm: harmony search.” Simulation, Vol. 76, No. 2, 60-68.

Gilewski, W., Kłosowska, J., and Obara, P. (2015). “Applications of tensegrity structures in civil engineering.” Procedia Engineering, Vol. 111, 242–248.

Juan, S. H., and Mirats Tur, J. M. (2008). “Tensegrity frameworks: static analysis review.” Mechanism and Machine Theory, Vol. 43, No. 7, 859–881.

Kebiche, K., Kazi-Aoual, M. N., and Motro, R. (1999). “Geometrical non-linear analysis of tensegrity systems.” Engineering Structures, Vol. 21, 864–876.

Lee, K. S., and Geem, Z. W. (2005). “A new meta-heuristic algorithm for continuous engineering optimization: harmony search theory and practice.” Computer Methods in Applied Mechanics and Engineering, Vol. 194, No. 36-38, 3902–3933.

Motro, R., and Raducanu, V. (2003). “Tensegrity systems.” International Journal of Space Structures, Vol. 18, No. 2, 77–84.

Murakami, H. (2001a). “Static and dynamic analyses of tensegrity structures. Part 1. Nonlinear equations of motion.” International Journal of Solids and Structures, Vol. 38, 3599–3613.

Murakami, H. (2001b). “Static and dynamic analyses of tensegrity structures. Part II. Quasi-static analysis.” International Journal of Solids and Structures, Vol. 38, 3615–3629.

Nuhoglu, A., and Korkmaz, K. A. (2011). “A practical approach for nonlinear analysis of tensegrity systems.” Engineering with Computers, Vol. 27, No. 4, 337-345.

Rao, R. V., Savsani, V. J., and Vakharia, D. P. (2011). “Teaching–learning-based optimization: a novel method for constrained mechanical design optimization problems.” CAD Computer Aided Design, Vol. 43, No. 3, 303–315.

Skelton, R. E., and de Oliveira, M. C. (2009). Tensegrity Systems. Springer, New York.

Snelson, K. D. (1965). Continuous tension, discontinuous compression structures. (American Patent No. US3169611A).

Temür, R., Bekdaş, G., and Toklu, Y. C. (2017). “Total potential energy minimization method in structural analysis considering material nonlinearity.” Challenge Journal of Structural Mechanics, Vol. 3, No. 3, 129–133.

Tibert, A. G., and Pellegrino, S. (2003). “Review of form-finding methods for tensegrity structures.” International Journal of Space Structures, Vol. 18, No. 4, 209–223.

Toklu, Y. C. (2004). “Nonlinear analysis of trusses through energy minimization.” Computers and Structures, Vol. 82, No. 20-21, 1581–1589.

Toklu, Y. C. (2013). “Structural analysis, metaheuristic algorithms and the method TPO/MA.” Proceedings of the 14th EU/ME Workshop, Hamburg, Germany, February 28-March 1, 44-50.

Toklu, Y. C., Bekdaş, G., and Temür, R. (2017). “Analysis of cable structures through energy minimization.” Structural Engineering and Mechanics, Vol. 62, No. 6, 749–758.

Toklu, Y. C., Bekdas, G., Yücel, M., Nigdeli, S. M., Kayabekir, A. E., Kim, S., and Geem, Z. W. (2021). “Total potential optimization using metaheuristic algorithms for solving nonlinear plane strain systems.” Applied Sciences (Switzerland), Vol. 11, No. 7.

Toklu, Y. C., and Uzun, F. (2016). “Analysis of tensegric structures by total potential optimization using metaheuristic algorithms.” Journal of Aerospace Engineering, Vol. 29, No. 5.

Tran, H. C., and Lee, J. (2011). “Geometric and material nonlinear analysis of tensegrity structures.” Acta Mechanica Sinica/Lixue Xuebao, Vol. 27, No. 6, 938–949.

Uzun, F., and Toklu, Y. C. (2014). “Biological evolution for analysis of tensegric structures.” ACE2014, 11th International Congress on Advances in Civil Engineering, ITU, Istanbul, Turkey, October 21-25.

Yang, X. S. (2009). “Harmony Search as a Metaheuristic Algorithm.” In Music–Inspired Harmony Search Algorithm. Springer.

Zhang, J. Y., and Ohsaki, M. (2015). Mathematics for Industry 6 - Tensegrity Structures: Form, Stability, and Symmetry, sixth volume, Springer.

Published
2022-10-31
Section
Articles