PENGEMBANGAN ELEMEN BALOK LENGKUNG DENGAN PEDEKATAN DEGENERATED SOLID
DOI:
https://doi.org/10.9744/duts.11.2.77-93Keywords:
metode elemem hingga, degenerated solid, consistent beam, least square smoothed assumed strain, koefisien koreksi geserAbstract
Salah satu teori untuk menganalisis balok lengkung dalam metode elemen hingga adalah degenerated solid beam. Fenomena yang umum terjadi pada elemen balok lengkung yaitu shear locking dan membrane locking. Koziey dan Mirza (1994) membuat perumusan baru untuk analisis belok lengkung berdasarkan third order shear deformation theory (TOSD). Pada perumusan degenerated solid beam element umumnya menerapkan first order shear deformation theory (FOSD) yang membutuhkan koefisien koreksi geser. Pada penelitian ini akan dikembangkan degenerated solid beam element dengan modifikasi metode least square smoothed assumed strain (LSSAS) untuk eleminasi locking. Selain itu, akan diteliti perbedaan elemen yang menggunakan FOSD dengan menggunakan TOSD. Hasil pengujian diperoleh bahwa metode LSSAS tidak efektif dalam membebaskan degenerated solid beam element dari locking dan consistent beam merupakan elemen yang belum stabil. Penggunaan perumusan TOSD memiliki performa yang sama dengan penggunaan perumusan FOSD.
References
Cook, R.D., Malkus, D.S., Plesha, M.E. & Witt, R.J. (2002). Concepts and applications of finite element analysis (4th ed.). Canada: John Wiley & Sons, Inc.
Gerges, R. R., & El-Damatty, A. A. (2002, June). Large displacement analysis of curved beams. In Proceeding of CSCE Conference, Montreal, QC, Canada, ST (Vol. 100).
Koziey, B.L. & Mirza, F.A. (1994). Consistent curved beam element. Computer & Structures, 51(6), p. 643-654.
Nascimbene, R. (2013). An arbitrary cross section, locking free shear-flexible curved beam finite element. International Journal for Computational Methods in Engineering Science and Mechanics. 14. 90-103. 10.1080/15502287.2012.698706.
Prathap, G. & Naganarayana, B.P. (1990), Analysis of locking and stress oscillations in a degenerated solid beam element element. Int. J. Numer. Meth. Engng., 30: 177-200. https://doi.org/10.1002/nme.1620300111
Prathap, G. and Babu, C.R. (1986), An isoparametric quadratic thick curved beam element. Int. J. Numer. Meth. Engng., 23: 1583-1600. https://doi.org/10.1002/nme.1620230902
Saffari & Tabatabaei (2007) A finite circular arch element based on trigonometric shape functions. Mathematical Problems in Engineering, Vol. 2007, Article ID 78507.
Shahba et. al (2013) New shape functions for non-uniform curved timoshenko beams with arbitrarily varying curvature using basic displacement functions. Meccanica 48:159–174
Shehata, A.Y. & El Damatty, Ashraf & Savory, Eric. (2005). Finite element modeling of transmission line under downburst wind loading. Finite Elements in Analysis and Design. 42. 71-89. 10.1016/j.finel.2005.05.005.
Stolarski, H., & Belytschko, T. (1983). Shear and membrane locking in curved C0 elements. Computer Methods in Applied Mechanics and Engineering, 41(3), 279 – 296.
Tufekci, Ekrem & Eroglu, Ugurcan & Aya, Serhan. (2017). A new two-noded curved beam finite element formulation based on exact solution. Engineering with Computers. 33. 10.1007/s00366-016-0470-1.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Sanjaya Halim, Foek Tjong Wong
This work is licensed under a Creative Commons Attribution 4.0 International License.