The Implementation of ANN in Predicting Construction Costs Considering Macroeconomic Factors
Penerapan Metode ANN Dalam Memprediksi Biaya Konstruksi Bangunan Dengan Mempertimbangkan Faktor Makroekonomi
Keywords:
Prediction, construction cost/m2, macroeconomic, ANN, LRAbstract
Budget calculations for residential construction is one of the crucial steps in development planning. Estimating the budget plan is not an easy task and requires a considerable amount of time to accomplish. Given the continuous growth in construction in Indonesia driven by macroeconomics, many projects necessitate cost estimation planning to determine the initial contract value of the construction project. The initial value of the construction project can be predicted using artificial intelligence methods. Producing an accurate predictive model is one of the goals to be achieved. The prediction methods employed in this study are artificial neural network (ANN) and linear regression (LR). Both methods will be evaluated to determine which one is best for predicting construction costs/m2. From the data collection, 119 pieces of data were obtained and utilized. Among them, 119 were projects spanning from 2012 to 2023. The results indicate that in the tested dataset, the ANN method yielded a MAPE value of 15% and an R value of 0.68. Based on the testing results, ANN emerges as the best method for predicting the construction cost/m2 of construction projects.
References
Ayu, E. S. (2017). “Faktor Penyebab Peningkatan Biaya Material pada Pelaksanaan Proyek Konstruksi di Sumatera Barat.” Jurnal Rekayasa, 7(2), 89–99.
Ang, Robert.(1997). “Buku Pintar: Pasar Modal Indonesia“. First Edition Mediasoft Indonesia
Akram, Q. F. (2009). “Commodity Prices, Interest Rates and the Dollar.” Energy Economics, 31(6), 838–851. (doi:https://doi.org/10.1016/j.eneco.2009.05.016)
Atho’Illah, M. I. (2021). METODE ARTIFICIAL NEURAL NETWORK. Surabaya: Universitas 17 Agustus 1945.
Ayu, Sonya Kartika. (2008). “Analisa Dampak Kenaikan Harga BBM terhadap Biaya Konstruksi”. Skripsi Fakultas Teknik Universitas Andalas, Padang.
Badan Pusat Statistik. (2017). Indeks Harga Perdagangan Besar Bahan Bangunan / Konstruksi Indonesia, 2002-2017. https://www.bps.go.id/statictable /2009/07/02/1458/indeks-harga-perdagangan-besar-bahan-bangunan-konstruksi-menurut-jenis-bangunan-konstruksi-bulanan-2002-2017.html
Chandra, H., & Wirantono, B. (n.d.). HUBUNGAN ANTARA BIAYA KONSTRUKSI BANGUNAN DENGAN INFLASI (Studi Kasus Berbagai Tipe Bangunan di Jawa Timur 1993-1998). Retrieved from http://puslit.petra.ac.id/journals/civil/
Chandanshive, V. B., & Kambekar, A. R. (2019). Estimation of Building Construction Cost Using Artificial Neural Networks. Pouyan Press.
Chandanshive, V. B., & Kambekar, A. R. (2019). Estimation of Building Construction Cost Using Artificial Neural Networks. Journal of Soft Computing in Civil Engineering, 3(1), 91–107. https://doi.org/10.22115/SCCE.2019.173862.1098
Cheng, Y. M. (2014). An exploration into cost-influencing factors on construction projects. International Journal of Project Management, 32(5), 850–860. https://doi.org/10.1016/j.ijproman.2013.10.003
Cliff J. Schexnayder, P. P. (2003). PROJECT COST ESTIMATING. American: NCHRP Project 20-7, Task 152,.
Derwin, S., (2012). Dasar Pemahaman Neural Network. Binus. Jakarta Barat
El-Sawalhi, N. I., & Shehatto, O. (2014). A Neural Network Model for Building Construction Projects Cost Estimating. Korean Institute of Construction Engineering and Management.
Emanuel, T. (2023). Prediksi Harga Material Konstruksi Di Indonesia Dengan Menggunakan Least Squares Support Vector Machine. Surabaya: Petra Christian University.
Fikri, A. (2009). Penerapan Data Mining Untuk Mengetahui Tingkat Kekuatan Beton Yang Dihasilkan. Semarang: Fakultas Ilmu Komputer Universitas Dian Nuswantoro.
Gambo, M. J., & Ashen, M. (2012). Application of Economic Indicators in Predicting Construction Cost Escalation for Residential Buildings in Nigeria. In International Journal of Economic Development Research and Investment (Vol. 3, Issue 1).
Hadi, M., & M. Abd, A. (2021). Using of an Artificial Neural Networks with Particle Swarm Optimization (ANN-PSO) Model in Prediction of Cost and Delay in Construction Projects. University of Diyala, College of Science.
Harahap, K. F., Aminullah, A., & Priyosulistyo, H. (2022). Pendekatan Artificial Neural Network untuk Mengestimasi Dimensi Optimum dan Rasio Tulangan Gedung.
Loren, R. R., Prayogo, D., & Budiman, J. (2022). Prediksi Kebangkrutan Dengan Metode Ann, Svm, Dan Cart Pada Perusahaan Properti, Konstruksi, Dan Industri Sejenis Yang Terdaftar Di Bei. Petra Christian University.
Ibrahim, B., (1993). Rencana dan Estimate Real of Cost. Bumi Aksara: Jakarta
Kennedy, P. S., & Hayrani, R. (2018). Pengaruh Faktor-Faktor Ekonomi Makro: Inflasi, Kurs, Harga Minyak. Jakarta: Jurnal Mitra Manajemen (Jmm Online)
Kuncoro, M. (2009). Metode Riset untuk Bisnis & Ekonomi: Bagaimana Meneliti & Menulis Tesis?, Edisi 3, Cetakan 1. Jakarta: Erlangga
Lowe, D. J., Emsley, M. W., & Harding, A. (2006). Predicting Construction Cost Using Multiple Regression Techniques. American Society of Civil Engineers (ASCE).
Mallick, H. (2011). Monetary Policy, Construction Sector Output And Housing Prices In India: An Emerging Economy Perspective. In Applied Econometrics and International Development (Vol. 11, Issue 1).
Mansur, S. A., Hamid, A. R. A., Yusof, N. A., Bahru, J., My, S., & My, R. (2016). Akademia Baru Rising Trend in Construction Cost and Housing Price. In Journal of Advanced Research in Business and Management Studies ISSN (Vol. 3, Issue 1).
Micahel D. Dell'Isoal, P. (2002). Impatct of Delivery Systems on Cost Management. AACE.
Moreno, et al. (2013). Using the R-MAPE index as a resistant measure of forecast accuracy. Psicothema 2013, 25(4), 500-506. doi:10.7334/psicothema2013.23.
Musarat, M. A., Alaloul, W. S., & Liew, M. S. (2021). Impact of inflation rate on construction projects budget: A review. In Ain Shams Engineering Journal (Vol. 12, Issue 1, pp. 407–414). Ain Shams University. https://doi.org/10.1016/j.asej.2020.04.009
Musyafa, A. (2016). Pengembangan Model Untuk Memprediksi Biaya Pembangunan Rumah Layak Huni Berdasarkan Harga Bahan.
Natalia, E. Y., & Afridola, S. (2019). Dampak Kebijakan Suku Bunga SBI Terhadap Profitabilitas Perbankan (Studi Kasus BPR Konvensional Dengan BPR Syariah Di Kota Batam). Jurnal Akuntansi Barelang, 4(1), 32–42. https://doi.org/e-ISSN 2580-5118 p-ISSN 2548-1827.
Nugroho, A., Beeh, Y., & Astuningdyas, H. (n.d.). PERANCANGAN APLIKASI RENCANA ANGGARAN BIAYA (RAB) (STUDI KASUS PADA DINAS PEKERJAAN UMUM KOTA SALATIGA).
Nguyen, P. T., & Le Hoang Thuy To Nguyen, Q. (2020). Critical factors affecting construction price index: An integrated fuzzy logic and analytical hierarchy process. Journal of Asian Finance, Economics and Business, 7(8), 197–204. https://doi.org/10.13106/JAFEB.2020.VOL7.NO8.197
Pratt. (1995). Minimizing Waste of Contration. New Jersey: PrenticesHall. Inc.
San Ong, T. (2013). Factors Affecting the Price of Housing in Malaysia. In Finance and Banking (JEIEFB). An Online International Monthly Journal (Issue 5). www.globalbizresearch.comwww.globalbizresearch.com
Sastraatmadja, A. S., (1984), Analisa Anggaran Biaya dan Pelaksana. Nova: Bandung.
Smith, N. J. (1995). “Purposes and stages of estimating.” Project cost estimating, N. J. Smith, ed., Thomas Telford Limited, London.
Sunariyah. (2010). Pengantar Pengetahuan Pasar Modal, Edisi ke-6. Yogyakarta: UPP STIM YKPN
Suparmoko, M. (2008). Keuangan Negara Dalam Teori dan Praktek, Edisi Kelima. Yogyakarta. : BPFE
Setiawan, H., & Yusuf, A. (2013). PENGARUH KENAIKAN BAHAN BAKAR MINYAK (BBM) TERHADAP BIAYA KONSTRUKSI.
Siti Sunayah, Z. I. (2016). Analisis Pengaruh Perubahan Variabel Makroekonomi Terhadap Return Saham Syariah Pt. Telekomunikasi Indonesia, Tbk Periode 2011-2013. Banten: Ain Sultan Maulana Hasanuddin.
Sugiyono, P. (2013). Metode Penelitian Pendidikan Pendekatan Kuantitatif, Kualitatif dan R&D. Bandung: Alfabeta. doi:979-8433-71-8
Suparmoko, M. (2008). Keuangan Negara Dalam Teori dan Praktek, Edisi Kelima. Yogyakarta.: BPFE.
Susiana.(2009). Analisis Peramalan Penjualan Minyak Kelapa Sawit (MKS) Pada PT Perkebunan Nusantara IV Unit Kebun Pabatu. Karismatika ,53(9),1689–1699.
Tahapari, Y., Setiawan Budi Nugroho, A., Budi Suparma, L., & Jl Grafika Kampus No, M. (2021). Model Estimasi Biaya Dengan Cost Significant Model Dan Artificial Neural Network Proyek Peningkatan Jalan Aspal di Yogyakarta.
Tarik, A., Beton, B., Beton, S., Waihattu, J., Reuse, K., Bangunan, M., . . . Takizawa, S. (2012). Studi Kuat Tekan Kolom Baja Profil C Ganda Dengan Pengaku Pelat Arah Lateral Watershed Hydrological Analysis of Jakarta Extreme Floods.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Yoszy Aldo Tondayana
This work is licensed under a Creative Commons Attribution 4.0 International License.